
EECS 126 Probability and Random Processes UC Berkeley, Spring 2020
Kannan Ramchandran May 14, 2020
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1 Rules

• Unless otherwise stated, all your answers need to be justified.

• You may reference your notes, the textbook, and any material that can be found through the
course website.

• You may use Google to search up general knowledge. However, searching up a question is
not allowed.

• Using online calculators such as Wolfram Alpha is not allowed.

• Collaboration with others is strictly prohibited.

• You have 60 + 15 minutes total for this part.

• For any clarifications you have, please create a private Piazza post. We will have a Google
Doc that shows our official clarifications.

2 Grading

Problem points earned out of

Pledge 4

Problems 96

Total 100
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3 Pledge of Academic Integrity (4 pts)

By my honor, I affirm that

(1) this document, which I have produced for the evaluation of my performance, reflects my original,
bona fide work;

(2) as a member of UC Berkeley community, I have acted with honesty, integrity, and respect for
others;

(3) I have not violated—nor aided or abetted anyone else to violate—the instructions for this exam
given by the course staff, including, but not limited to, those on the cover page of this document;
and

(4) I have not committed any act that violates—nor aided or abetted anyone else to violate—the
UC Berkeley Code of Student Conduct.

In the space below, hand-copy the text of the pledge above—verbatim—and then sign.

Signature Date
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4 Problems (8 pts each)

1. Detecting Faults

A factory produces n robots, each of which is faulty with probability φ. Each robot is tested:
if it is faulty, it’ll be flagged with probability δ. If it is not faulty, then it won’t be flagged.
Let X be the number of faulty robots, and Y the number of flagged robots. Let φ = δ = 1/2.
Compute E[X|Y ].

An unflagged robot is in fact faulty with probability π = φ(1−δ)
1−φδ . Thus the number of

unflagged faulty robots, given Y , is Binomial(n− Y, π), with mean (n−Y )φ(1−δ)
(1−φδ) . Hence

E[X | Y ] = Y +
(n− Y )φ(1− δ)

1− φδ
=

2

3
Y +

1

3
n.

2. Poisson and Gaussian

If X ∼ Poisson(λ), define a new variable Z ∼ N (X,X2). What is the mean and variance of
Z?

Hint: If X and Y are independent, V ar[XY ] = E[X2]E[Y 2]− E[X]2E[Y ]2

We can write it as

N (X,X2) = X +XN (0, 1)

= XN (1, 1)

E[XN (1, 1)] = E[X]E[N (1, 1)]

= λ

Then from the hint we have

V ar[XN (1, 1)] = E[X2]E[N (1, 1)2]− E[X]2E[N (1, 1)]2

= E[X2]E[N (1, 1)2]− λ2

= 2E[X2]− λ2

= 2(λ+ λ2)− λ2

= 2λ+ λ2
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3. BEC

You’re trying to send one of 21000 equally likely messages across a Binary Erasure Channel
(BEC) with erasure probability 0.5 using Shannon’s random codebook scheme. What is the
maximum rate of reliable transmission to ensure a probability of success of at least 1− 2−20?
You may leave your answer as an unsimplified fraction. Hint: In this question we have the
source messages of length L = 1000 instead of received messages n = 1000.

The probability of error is upper bounded by 2−n(1−p)+L(n). From the question we know
L(n) = 1000. Thus we have 2−n(1−p)+1000 ≤ 2−20. Thus n = 2040, which gives R = 1000

n
=

1000
2040

.

4. Markov Chain Estimation

Assume that {Xi} is a Markov chain with states 0, 1 and transition matrix[
1− p p
p 1− p

]
(1)

(a) Assume that we observe a sequence X1, X2, · · · , XN , XN+1, and we have a prior on p
which is uniform distribution on [0, 1]. Find the maximum a posteriori estimator of p.
[Hint; your result may depend on the number of times the Markov chain changes state,
i.e. A =

∑N
i=1 I(Xi 6= Xi+1), where I is the indicator function. ]

(b) Banghua wants to use the estimator A/N for p. Use the central limit theorem to find
the probability that the estimator exceeds p by

√
p(1− p)/2. Your result can depend on

φ(x) = P (X ≤ x) where X is a standard normal distribution.

(a) MAP is equivalent to MLE since we have uniform prior.

The likelihood function is L(X1, · · · , XN , XN+1; p) = pA(1− p)N−A.

By differentiating it and set that as 0. We can see that

p∗ =
A

N
. (2)

(b) From CLT we know that

P (
A

N
− p ≥

√
p(1− p)

2
) = P (

√
N ·

A
N
− p√

p(1− p)
≥
√
N

2
)

= P (N (0, 1) ≥
√
N

2
)

= 1− φ(

√
N

2
). (3)
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5. Interesting DTMC

Let {Xn, n = 0, 1, 2, ...} be a Discrete Time Markov Chain with state space {0, 1, 2, ..}. The
transition probabilities are given by p0,i = (1

2
)i for i ≥ 1. Also, for i ≥ 1, we have pi,0 = 1/2

and pi,i+1 = 1/2.

(a) Is the chain irreducible? Justify.

The Markov Chain looks like this.

0 1 2 3 . . .
1/2 1/2 1/2 1/2

1/4

1/8

1/16

1/2

1/2

1/2

1/2

Every state is reachable to every other state, and therefore it’s irreducible.

(b) Is the chain recurrent? Justify.

Recurrence is a class property, so let’s just look at state 0. To not return to it, we
must go forward an infinite number of times, leading to a probability of (1

2
)∞ = 0.

The chain is therefore recurrent.

(c) Is the chain positive recurrent? Justify.

Positive recurrence is also a class property, so let’s just look at state 0. The expected
time to return to 0 from states 1, 2, . . . is a geometric random variable with p = 1

2
, so

its expectation is 2. The expected time it takes for us to return to state 0 is the 1 step
we take to go to states 1, 2, . . . and then the 2 steps it takes us on average to return.
This is 3, which is finite, so state 0 and by extension the chain is positive recurrent.
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6. COVID Queues

A local grocery store is implementing social distancing. Customers are allowed in only if there
are fewer than 2 customers in the store. Else, they have to line up and come in one by one,
with each exiting customer ‘releasing’ the next entering customer. The line can have at most 3
customers waiting (6 feet apart) to get into the store; any more arriving customers are turned
away.

Suppose the store is initially empty. The customers arrive into the store as a Poisson(λ)
process, with λ = 1 customer / minute. Once in the store each customer shops for a time
that follows Exponential(µ), with 1/µ = 2 minute, independent of other customers.

Kannan arrives a long time after the grocery store has opened. What’s the expected time
that he spends at the store (including both waiting time and shopping time). If he’s turned
away, he spends 0 time.

0 1 2 3 4 5

λ

µ

λ

2µ

λ

2µ

λ

2µ

λ

2µ

We can represent the problem as a CTMC with states from 0 to 5, representing the
number of people. The first step is to compute the stationary distribution. We have

λπ0 = µπ1

λπ1 = 2µπ2

λπ2 = 2µπ3

λπ3 = 2µπ4

λπ4 = 2µπ5
5∑
i=0

πi = 1

Solving, we get that

1 = π0 +
λ

µ

(
1 +

λ

2µ
+

(
λ

2µ

)2

+

(
λ

2µ

)3

+

(
λ

2µ

)4
)
π0

π0 =
1

1 + 10
= 1/11

To find the expected time, we can break it down into cases. With probability π5, Kannan
is simply turned away. With probability 1 − π5, he’ll spend at least 1

µ
time shopping.

When there are two or more people at the store, he’ll additionally spend time waiting for
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these people to finish, each of which happens at rate 1
2µ

. So the answer is

(1− π5) ·
1

µ
+

1

2µ
(π2 + 2π3 + 3π4) =

9

11
· 2 + (

2

11
+

4

11
+

6

11
) =

30

11
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7. Chair Game

Will and Sean are playing a chair game. Initially, they are both sitting down. Will stands
up/down at a rate of 3 and Sean independently stands up/down at a rate of 2. How long does
it take for both of them to be standing up?

(0, 0) (0, 1)

(1, 0) (1, 1)

2

2

33

2

2

33

We can model this with a CTMC. Let the states be (Will sitting, Sean sitting) ( (0, 0)
state 1), (Will standing, Sean sitting) ((1, 0) state 2), (Will sitting, Sean standing) ((0, 1)
state 3) and (Will standing, Sean standing) ((1, 1) state 4). Also, let T (i) be the expected
hitting time from state i to state 4. We have

T (1) = 1/5 + 3/5T (2) + 2/5T (1)

T (2) = 1/5 + 3/5T (1)

T (3) = 1/5 + 2/5T (1)

since T (4) = 0. Solving this we obtain, T (1) = 5/6.

8. Boba

A boba from a good boba place is delicious with probability 0.8. A boba from a bad boba place
is delicious with probability 0.3. We know that 0.6 fraction of the boba places in Berkeley are
good. Christina visits a new boba place twice and gets one delicious boba, then one disgusting
boba. What are the MLE and MAP estimates of whether the new boba place is good?

Let θ = 1 indicate that the boba place is delicious, and 0 otherwise. The maximum
likelihood estimator maximizes the likelihood function L(X; θ). We know that L(X; θ =
1) = 0.8 ∗ 0.2 = 0.16, L(X; θ = 0) = 0.3 ∗ 0.7 = 0.21. Thus MLE estimator determines
the new place is bad.

The MAP estimator would be maximize P (θ|X). We have P (θ = 0|X)P (X) = 0.3 ∗ 0.7 ∗
0.4 = 0.084, P (θ = 1|X)P (X) = 0.2 ∗ 0.8 ∗ 0.6 = 0.096. Thus MAP will determine the
new place is good.
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9. Rigged Die

Avishek presents a normal-looking four-sided die numbered from 1 to 4 and suggests you play
game for some money: “If it lands even, I will pay you 3 dollars, and if it lands odd, you
have to pay me 2 dollars”. It seems like an easy win for you, but you recall Avishek owns an
identical four-sided die with the probability distribution:

X =


1 w.p. 1/4

2 w.p. 1/6

3 w.p. 1/2

4 w.p. 1/12

While Avishek is not looking, we roll the die once and see the result. We decide to conduct a
Neyman-Pearson Hypothesis test with the null hypothesis being that the die is fair, and the
alternative being that the die follows the rigged die distribution as shown above. We want to
limit our probability of false alarm to 30%. What is our optimal decision rule?

In the Neyman Pearson framework, H0 corresponds to the null hypothesis, where X ∈
{1, 2, 3, 4} with probability {1/4, 1/4, 1/4, 1/4}. The alternate Hypothesis H1 is given in

the problem. Define the likelihood ratio: L(a) = P(X=a|H1)
P(X=a|H0)

, and using the the above, we
have

L(1) = 1, L(2) = 2/3, L(3) = 2, L(4) = 1/3.

Whenever the likelihood ratio exceeds a threshold, we decide in favor of H1. The next
goal is to find the threshold. We observe that, if the threshold λ < 1, the false alarm
condition is always violated. Furthermore, if λ > 1, then the false alarm condition cannot
be reached. Based on this observation, we select the threshold λ = 1. Hence the decision
rule is
(a) if X = {2, 4}, decide H0, and
(b) if X = {3}, decide H1.

When X = 1, we have L(1) = λ, and hence need to randomize. Here we select H1 with
probability γ. The value of γ is obtained from the false alarm limit. We have

P(H1|H0) = P(X = 3|H0) + γP(X = 1|H0) = 0.3 (4)

Hence, we obtain 0.25 + γ/4 = 0.3, which implies γ = 0.2.
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10. LLSE, MMSE, QLSE

Let Y be distributed as Exponential(λ) and X be distributed as U [0, Y ]. Find

(a). MMSE[X2|Y ]

(b). LLSE[X|Y ]

(c). The best (in terms of the mean-squared error) quadratic estimator of X2 given Y , i.e. an
estimator of X2 of the form of a+ bY + cY 2, known as QLSE[X2|Y ]

(a). MMSE[X2|Y ] = E[X2|Y ] = Y 2

12
+ Y 2

4
= Y 2

3

(b). E[X|Y ] = Y
2

, which is a linear function of Y . So LLSE[X|Y ] = Y
2

(c). From part (a), we know that MMSE estimator is a quadratic function of Y . Thus
QLSE[X2|Y ] = Y 2

3
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11. Interesting Gaussian

Let X ∼ N (0, 1), a > 0, and Y be

Y =

{
X |X| < a

−X |X| ≥ a.

(a) Show that Y ∼ N (0, 1) for any a.

(b) Find an expression for ρ(a) = cov(X, Y ) in the form of α + β
∫∞
a
x2φ(x)dx for some

constants α, β. Here φ is the probability density function (PDF) for standard normal
distribution.

(c) Is (X, Y ) joint Gaussian for all values of a? (Hint: consider the case when ρ(a) = 0.)

(a) It suffices to show that P (Y ≤ y) = P (X ≤ y) for each cases y ≤ −a, |y| < a, y ≥ a.
For the case of y ≤ −a, we have

P (Y ≤ y) = P (−X ≤ y) = P (X ≥ −y) = P (X ≤ y). (5)

For the case of |y| < a, we have

P (Y ≤ y) = P (−X ≤ −a) + P (−a ≤ X ≤ y) = P (X ≤ −a) + P (−a ≤ X ≤ y) (6)

= P (X ≤ y). (7)

For the case of y > a, by symmetry we have P (Y ≥ y) = P (X ≥ y).

(b)

ρ(a) = E[XY ]

=

∫ a

−a
xy(x)φ(x)dx+ 2

∫ ∞
a

xy(x)φ(x)dx

=

∫ a

−a
x2φ(x)dx− 2

∫ ∞
a

x2φ(x)dx

= 1− 4

∫ ∞
a

x2φ(x)dx.

(c) No. From above we know that there exists some a such that ρ(a) = 0. With this
a, if the pair X, Y is joint gaussian, X, Y must be independent. However, we have
P (X > a, Y > a) 6= P (X > a)P (Y > a) since the LHS is 0.
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12. Hilbert Space of Random Variables

Because the Hilbert Space of Random Variables equips us with an inner product, we can
actually think about the angle between random variables.

(a) Suppose the angle between two zero-mean random variables X1 and Y1 is 60 degrees.
var(X1) = 4 and var(Y1) = 9. Draw a figure depicting the geometry of X1 and Y1, and
show that L[X1 | Y1] = 1

3
Y1 geometrically.

In your plot, X1 should be a vector with length 2 and Y1 a vector with length 3, with
their angle as 60 degrees. The projection of vector X1 onto vector Y1 is 2 cos(60)

3
Y1 =

1
3
Y1.

(b) Now suppose X2 = 2X1 +N (0, 1), and Y2 = X2 +N (0, 5), where the normals are inde-
pendent of each other and of X1 and Y1.

(i) What is the prediction of X2 at time 1, i.e. L[X2 | Y1]?

L[X2 | Y1] = L[2X1 +N (0, 1) | Y1] = 2L[X1 | Y1] = 2
3
Y1.

(ii) What is the innovation Ỹ2 of the new sample Y2 given Y1?

Ỹ2 = Y2 − L[Y2 | Y1] = Y2 − L[X2 | Y1] = Y2 − 2
3
Y1.

(iii) What is your estimate of X2 given Y1 and Y2, i.e. L[X2 | Y1, Y2]?

L[X2 | Y1, Y2] = L[X2 | Y1] + k2Ỹ2. To calculate the Kalman gain, we use the
filter equations. σ2

1|1 is the length squared of the error vector X1 − L[X1 | Y1].
Viewing it geometrically, σ2

1|1 =
√

3
2

= 3. Then

σ2
2|1 = a2σ2

1|1 + σ2
v = 22 · 3 + 1 = 13

k2 =
σ2
2|1

σ2
2|1 + σ2

w

=
13

13 + 5
=

13

18

So L[X2 | Y1, Y2] = 2
3
Y1 + 13

18
(Y2 − 2

3
Y1) = 5

27
Y1 + 13

18
Y2


