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Midterm 1

Last Name First Name SID

• You have 10 minutes to read the exam and 90 minutes to complete this exam.

• The maximum you can score is 120, but 100 points is considered perfect.

• The exam is not open book, but you are allowed to consult the cheat sheet that we provide.
No calculators or phones. No form of collaboration between the students is allowed. If
you are caught cheating, you may fail the course and face disciplinary consequences.

• A correct answer without justification will receive little, if any, credit.

• Take into account the points that may be earned for each problem when splitting your
time between the problems.

Problem points earned out of

Problem 1 40

Problem 2 20

Problem 3 20

Problem 4 20

Problem 5 20

Total 120
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Problem 1: Answer these questions briefly but clearly. [40]

(a) Covariance and Independence [5]

Exhibit a pair of random variables (X,Y ) such that X and Y are dependent, but cov(X,Y ) = 0

Let X = Uniform([−4, 4]) and Y = X2.

Then we have E(XY ) = E(Y E(X|Y )) = 0. In addition, since E(X) = 0, we have cov(X,Y ) = 0.

(b) MGF [5] Let MX(s) be the moment generating function of a random variable X. Which
of the following are valid moment generating functions? If valid, prove which random variable
(as a function of X) the MGF belongs to. If invalid, justify.

1. MX(s)MX(2s)

2. 2MX(s)

3. e−2sMX(s)

(i): We know that MX(2s) is the MGF of 2X, hence MX(s)MX(2s) is the MGF of X + 2X ′

where X ′ is an independent copy of X. (ii): we know that MGF evaluated at zero must give 1,
however 2MX(0) = 2 6= 1, hence can not be a valid MGF. (iii): e−2sMX(s) = E(es(X−2)) and
hence is the MGF of X − 2.

(c): Book Sale [10] Bob is at a book sale. There are T books in all and L books that he
likes. Bob picks up a book at random and buys it if he likes it. Books that are considered once
are not considered again. Let X be the number of books he must examine to find n books that
he likes. (Here, n,L, T ∈ N are fixed numbers (n ≤ L ≤ T ), while X is a random variable.
The final answers should not involve summations but can have expressions like

(
n
k−1
)
, as well as

factorials.)

1. Find E[X]. (Hint: You do not require the density to find this. Think about symmetry
and then use linearity).

2. Find P (X = x). (Hint: Find the right quantity to condition on).
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1. Let Xj be the number of non-liked books between the j−1st and the jth liked book tested.
Then, X = n+ (Σn

j=1Xj) (noting that we include the n liked books we sample aside from
the non-liked ones). By symmetry, the expected number of non-liked books between any
two liked books (E[Xj ]) is the same and there are L+ 1 such ’slots’. Thus, it follows that
E[Xj ] = T−L

L+1 . Lastly, it then follows that E[X] = nT−LL+1 + n = nT+1
L+1 .

2. Consider the event Ax that the xth book tested is liked. By symmetry in sampling without
replacement, the probability that this happens is L

T . Now, conditioned on Ax, the prob-
ability that X = x corresponds to exactly n − 1 likeable books in the first x − 1 books
and x − n non-liked books in the first x − 1 books. The total number of ways for this to
happen is

(
L−1
n−1
)(
T−L
x−n

)
. The total number of ways to pick the x − 1 books at the front is(

T−1
x−1
)
. Finally, notice that any sequence of books is equally likely. Then,

P (X = x) =

(
L−1
n−1
)(
T−L
x−n

)(
T−1
x−1
) L

T
.

(d) Points in square [5] Two points are placed uniformly at random and independently in
[0, 1]2. What is the expected value of the square of the distance between the two points?

Let (X1, Y1) and (X2, Y2) be the two points. The quantity of interest is D = (X1−X2)
2 +(Y1−

Y2)
2. Note that X1, X2 are independent and uniformly distributed in [0, 1], and so are Y1, Y2.

Hence, E((X1 −X2)
2) = 2E(X2

1 )− 2E(X1)
2 = 2Var(X1) = 1/6. Similarly, E((Y1 − Y2)2) = 1/6.

Therefore, E(D) = 1/3.

(e): Light bulbs [5] A lighting company tests 10 bulbs by turning them on at the same time.
Each bulb has a lifetime exponentially distributed with parameter λ. Let X be the length of
the time interval between the time that the first bulb burns out and the second bulb burns out.
Find fX(x).

First, notice that the distribution of X(2)−X(1) is independent of X(1). This can be justified by
the fact that conditioning on a particular value of X(1), the additional remaining lifetimes of the
n− 1 bulbs is independent of X(1) by memorylessness of the exponential distribution. Then, we
can view X(2)−X(1) as the time till the death of the first of the remaining n− 1 bulbs, and can
hence conclude that it is distributed as the minimum of n−1 i.i.d. exponential random variables.
Finally, using the formula for ordered statistics derived in discussion, we conclude thatX(2)−X(1)

is itself exponentially distributed with rate (n− 1)λ, hence fX(2)−X(1)
(x) = (n− 1)λe−(n−1)λx.
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(f) Fountain Codes [10]

100 data chunks need to be transmitted over a packet erasure channel (as in Lab 2). We will
encode the data chunks into 200 packets using the following scheme. For each packet, we will
first roll a 6-sided fair die, and based on the outcome, sample uniformly at random without
replacement that many of the 100 data chunks and XOR the data chunks. (As an example, if
the die comes up ”3”, then the corresponding packet will be the XOR of three uniformly sampled
random data chunks from 1 to 100, say data chunks 4, 43 and 87).

1. What is the probability that a data chunk is connected to a given packet?

2. What is the average number of packets that a data chunk will be associated with?

3. What is the probability that a data chunk is not connected to any packet?

1. We compute the probability that a chunk Xi is connected to some packet Yj . Suppose the
outcome of the die is d. Conditioned on this,

P (xi ∈ Yj |Dj = d) = d/100

P (xi ∈ Yj) =
∑
d

P (xi ∈ Yj |Dj = d)pD(d) =
∑
d

d · pD(d)

100
= 3.5/100

2. Since a chunk is connected to each packet with probability 3.5/100, the expected number
of packets a chunk is part of is 200× 3.5/100 = 7 by linearity of expectation.

3. The probability that a data chunk is not connected to any given packet is (1 − 3.5
100). So

the required probability is (1− 3.5
100)200.
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Problem 2: Magnets [20]

There are n bar magnets, n > 1, placed in a line end to end. Assume that each magnet
takes one of the two possible orientations, say (NS) or (SN), with equal probability, and mag-
nets have independent orientations. Adjacent magnets with like poles repel, while those with
opposite poles join and form blocks. For instance, if n = 5, and the orientation of magnets is
(NS)(SN)(SN)(NS)(NS), they form 3 blocks of the form (NS) | (SN)(SN) | (NS)(NS).
Let N be the number of blocks of joint magnets.

1. What is E(N)?

Let Xi, 1 ≤ i ≤ n, be the orientation of the ith magnet. Also, let Ii, 1 ≤ i ≤ n − 1,
be the indicator of the event that magnets i and i + 1 have opposite orientation. In-
deed, N = 1 +

∑n−1
i=1 Ii. Moreover, E(Ii) = 1/2 for 1 ≤ i ≤ n − 2. Therefore, E(N) =

1 + (n− 1)/2 = (n+ 1)/2.

2. What is Var(N)?

With the above notation, we have E(IiIj) = 1/4 for i 6= j. Therefore,

Var(N) = Var(N − 1) = E

n−1∑
j=1

Ij

2− (n− 1

2

)2

= (n− 1)/4.
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Problem 3: Squared sum of Gaussians [20]

Let X and Y be independent Gaussian random variables with mean 0 and standard deviation
1.

1. Derive the probability density function (pdf) of X2 + Y 2.

Consider the MGF of X2

MX2(s) = E[esX
2
] =

∫ ∞
−∞

esx
2 e−x

2/2

√
2π

dx =
1√
2π

∫ ∞
−∞

e−(1/2−s)x
2
dx

Notice the integral on the right resembles that of a Gaussian pdf with 1
2σ2 = 1/2− s =⇒

σ2 = 1/2
1/2−s . So the value of the integral is just 1/(normalization constant) =

√
2πσ2 =√

2π 1/2
1/2−s . So the MGF is √

2π 1/2
1/2−s

2π
=

√
1/2

1/2− s

Since X2 and Y 2 are independent, we know

MX2+Y 2(s) = MX2(s)MY 2(s) =
1/2

1/2− s

We see this is the MGF of an exponential with parameter 1/2. So the pdf of X2 + Y 2 is
1
2e
−z/2.

Alternative solution: Start with the cdf.

P (X2 + Y 2 < z) =

∫∫
C
fX,Y (x, y)dxdy

=

∫∫
C

e−(x
2+y2)/2

2π
dxdy =

1

2π

∫∫
C
e−r

2/2rdrdθ =

∫ z/2

0
e−udu = 1− e−z/2

where C is the circle of radius
√
z. The pdf is therefore

d(1− e−z/2)
dz

=
1

2
e−z/2

Z = X2 + Y 2 is therefore distributed Exp(1/2).

2. For t > 2, provide upper bounds on P(X2 +Y 2 > t) using Markov and Chebyshev inequal-
ity.

By Markov’s inequality with Z = X2 + Y 2,

P [Z > t] ≤ E[X2 + Y 2]

t
= 2/t
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From Cheybyshev’s, we have

P [Z > t] = P [Z − 2 > t− 2] ≤ P [|Z − 2| > t− 2] ≤ 4/(t− 2)2
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Problem 4: Graphical Density [20]

Let (X,Y ) be uniformly distributed over the triangle with vertices (0, 0), (1, 0), and (2, 1).

1. Find fX,Y (x, y) and fX(x).

2. Compute E[Y | X = x].

1. Since the density is uniform, we need only calculate the total area of the triangle, which
is (1 · 1)/2 = 1/2. Therefore, the density is

fX,Y (x, y) = 2, (x, y) ∈ T,

where T is the triangle.

We integrate out y:

fX(x) = 1{0 ≤ x ≤ 1}
∫ x/2

0
2 dy + 1{1 ≤ x ≤ 2}

∫ x/2

x−1
2 dy

= x · 1{0 ≤ x ≤ 1}+ (2− x) · 1{1 ≤ x ≤ 2}.

The density can equivalently be written as

fX(x) = (1− |x− 1|)+,

where x+ = max(0, x).

2. If 0 ≤ x ≤ 1, then Y | X = x is uniform on a slice from 0 to x/2, so E[Y | X = x] = x/4.
Similarly, if 1 ≤ x ≤ 2, then Y | X = x is uniform on a slice from x − 1 to x/2, so
E[Y | X = x] = (3x− 2)/4.
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Problem 5: Sum of Poisson Squares [20] Let Xi, i ≥ 1 be i.i.d. Poisson random variables
with parameter λ. Also, let N be a geometric random variable with parameter p which is
independent from all Xi’s. With this, define S := X2

1 +X2
2 + · · ·+X2

N .

1. Find E (S).

Using the law of iterated expectations, we have

E (S) = E (E (S|N)) =

∞∑
n=1

E (S|N = n) Pr (N = n) .

Since N is independent from Xi’s, we have E (S|N = n) = nE
(
X2

1

)
= n(Var(X1) +

E (X1)
2) = n(λ+ λ2). Hence, E (S|N) = N(λ+ λ2) and

E (S) = (λ+ λ2)E (N) =
λ+ λ2

p
.

2. For an integer k ≥ 1, find E (S|N > k).

Again, using the law of iterated expectations, we have

E (S|N > k) = E (E (S|N) |N > k) =
∞∑

n=k+1

E (S|N = n,N > k) Pr (N = n|N > k)

=
∞∑

n=k+1

E (S|N = n) Pr (N = n− k)

where in the second line, we have used the memoryless property of the geometric distribu-
tion to substitute Pr (N = n|N > k) with Pr (N = n− k) for n > k. Using the calculations
in the previous part, we have

E (S|N > k) =
∞∑

n=k+1

(λ+ λ2)nPr (N = n− k)

= (λ+ λ2)
∞∑
n=1

(n+ k)Pr (N = n)

= (λ+ λ2)E (N + k)

= (λ+ λ2)

(
1

p
+ k

)
.
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