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Midterm 2

Last Name First Name SID

Rules.

• No form of collaboration between the students is allowed. If you are caught cheating,
you may fail the course and face disciplinary consequences.

• You have 10 minutes to read the exam and 90 minutes to complete it.

• The exam is not open book. No calculators or phones allowed.

• Unless otherwise stated, all your answers need to be justified.

Problem points earned out of

Problem 1 36

Problem 2 20

Problem 3 30

Problem 4 26

Problem 5 14

Total 126
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1 Assorted Problems [36]

(a) Bipartite Markov Chain [4]

Consider the following undirected bipartite Markov chain. At each time step, you pick
one of your neighbors uniformly at random to transition to. If we start with an arbitary
distribution π0, then the distribution of this Markov Chain after k transitions will always
converge to the stationary distribution as k →∞. Justify your answer.

L
R

Figure 1: *

Complete Bipartite Graph for m = 3, n = 4

© True © False

False. It is periodic with period 2, and thus does not always converge.

(b) School Cancellations [8]

In Berkeley, power outages happen according to a Poisson Process with a rate of λp
and independently earthquakes happen according to a Poisson Process with a rate of λe.
Marc Fisher cancels school with probability pp if there is a power outage, and pe if there
is an earthquake. What is the expectation and the variance of the amount of time T
between the previous school cancellation and the next school cancellation from today?
You may assume that this trend has been going on since infinitely in the past.

The merged Poisson Process of school cancellations is PP(λp · pp + λe · pe). By the
random incidence paradox, the interarrival time of school cancellations is distributed
as Exponential(λp·pp+λe·pe)+Exponential(λp·pp+λe·pe), where the two exponentials
are independent.

E[T ] =
2

λp · pp + λe · pe

var(T ) =
2

(λp · pp + λe · pe)2
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(c) Entropy of a Markov Chain [8]

Consider a random walk along the integers (. . . , -3, -2, -1, 0, 1, 2, 3, . . . ). You start at
0 at time 0 and pick a direction (positive or negative with equal probability) to move
in for time 1. At every time step after 1, you reverse direction with probability 0.25
and take a step in the new direction, or continue in the same direction otherwise. What
is H(X0, . . . , Xn−1)? You may leave your answer in terms of Hb(p) = −p log p − (1 −
p) log(1− p).

The number of bits needed to encode is H(X0, . . . , Xn−1).

H(X0, . . . , Xn−1) =
n−1∑
k=0

H(Xk | Xk−1, . . . , X0)

We know that

• H(X0) = 0 since we always start at 0.

• H(X1 | X0) = Hb(
1
2
) = 1 since it is equally likely for X1 = 1 and X1 = −1.

• H(Xk | Xk−1, . . . , X0) = H(Xk | Xk−1, Xk−2) since given the last two states we
know exactly where we are and what direction we’re moving in.

• H(Xk | Xk−1, Xk−2) = Hb(0.25) since w.p 0.75, we continue in our direction
and end up at Xk−1 + (Xk−1 − Xk−2), and w.p 0.25, we reverse direction and
end up at Xk−2.

So the answer is 0 + 1 + (n− 2)Hb(0.25).

(d) Poisson Process and Covariance [8]

Consider a Poisson Process {N(s) : s ∈ [0,∞)} with rate λ.

Find the covariance of N(t1) and N(t2) for t2 > t1 ≥ 0.

We have the crucial fact that N(t1), N(t2)−N(t1) are independent. Thus we have
the following:

Cov
(
N(t1), N(t2)

)
= Cov

(
N(t1), N(t1) +N(t2)−N(t1)

)
= Cov

(
N(t1), N(t1)

)
+ Cov

(
N(t1), N(t2)−N(t1)

)
= Var

(
N(t1)

)
= λt1

The last equality is due to the fact that N(t1) ∼ Poisson(λt1).
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(e) Metropolis Hastings [8]

Answer the following True/False questions about the MCMC lab. Briefly justify your
answer in one or two sentences.

Metropolis Hastings allows us to generate random samples from a distribution p(x) even
if it’s intractable to compute.

© True © False

True. It does this by creating a Markov chain whose stationary distribution equals
p(x).

Any Metropolis Hastings Markov chain can be made aperiodic.

© True © False

True. This can be done by giving every state a self loop with the same probability
i.e. lazy chain from homework.

Burn in time is how long the Markov chain takes to converge to the state whose stationary
distribution probability is maximal.

© True © False

False. In general Markov chains don’t converge to a single state. Burn in time is how
long it takes for the initial distribution to converge to the stationary distribution.

In the Traveling Salesman Problem, you want to find the shortest path to visit n cities.
Even though this problem has n! possible answers and is NP-hard, we can approximately
solve it with Metropolis Hastings. Our plan is to design a Markov chain such that if x∗

is the best path, the stationary distribution probability π(x∗) will be maximal. Then
by running the Markov chain for a long time and looking at the most commonly visited
state, we can infer the best path. If L(x) is the length of a path x, then for this problem
we could let our directly proportional estimate f(x) be equal to L(x).

© True © False

False. We need f(x) to be decreasing in L(x). Here f(x∗) would actual be minimal,
when we need it to be maximal.
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2 Convergence [20]

(a) Convergent Balls [10]

Kevin has a basket of k balls. Each ball is either white or red. Initially, all of the balls
in his basket is red. Let X

(n)
i denote the if the i-th ball is red at time step n. And let

Yn =
∑k

i=1X
(n)
i therefore be the number of balls in Kevin’s basket that are red at time

step n. At every time step, Kevin takes a ball out uniformly at random, and he replaces
the ball with a white ball. Prove that Yn converges in probability to 0.

lim
n→∞

P
(
|Yn − 0| > ε

)
= lim

n→∞
P
(
Yn ≥ 1

)
≤ lim

n→∞

E[Yn]

1

= lim
n→∞

E
[ k∑
i=1

X
(n)
i

]
= lim

n→∞
k E[X

(n)
1 ]

= lim
n→∞

k
(

1− 1

k

)n
= 0

Many students attempted to split P (Yn ≥ 1) into a product. However, it is important

to note that the X
(n)
i are not independent.

(b) Markov Chain Groups [10]

Consider the following Markov Chain

A B0.75

0.25

0.5

0.5

Given a finite length sequence x1, . . . , xn sampled from this Markov chain, we can form
groups for samples that are in the same state. For example, if our sequence is

A,A,A︸ ︷︷ ︸
1

, B,B︸︷︷︸
2

, A,A︸︷︷︸
3

, B,B,B,B,B︸ ︷︷ ︸
4

Then we have 4 groups of size 3, 2, 2, 5. Let Gn be

Gn =
n

number of groups among x1, . . . , xn

In the example, G3+2+2+5 = G12 = 12
4

= 3. What does Gn converge to?
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Gn can be written as

G =
1

2k

k∑
i=1

(
Ai +Bi

)
where k = n

2
. A few details:

• Ai is the size of the i-th A-group. In the example, A1 = 3 and A2 = 2.

• Bi is the size of the i-th B-group. In the example, B1 = 2 and B2 = 4.

We know that

• Ai ∼ Geometric(0.25) and Bi ∼ Geometric(0.5).

• Because of the Markov Property, every Ai and Bi is independent of each other.

• There are some small issues with the last Ai not necessarily being geometric,
as well as the fact that there might be one more A group than B group (or vice
versa). However, they are negligible as n→∞.

By the SLLN, Gn converges almost surely to E[A1]+E[B1]
2

=
1

0.25
+ 1

0.5

2
= 3.
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3 Discrete Time Markov Chains [30]

Consider the following Discrete Time Markov Chain.

0 1 2 . . .

Done

1− p 1− p 1− p

p p

p

1− q

q

(a) Stationary Distribution [10]

Find the stationary distribution of the chain.

Choosing cuts around all groups of vertices {0, 1 . . . i} we get the following balance
equations

(1− p)π(0) + pπ(0) = qπ(d) = π(0)

(1− p)π(1) + pπ(1) + pπ0 = qπd ⇒ π1 = qπd(1− p)

. . .

πi = q(1− p)iπd
Normalizing the distribution we get

πd =
p

q + p

πi = q(1− p)i p

q + p

(b) Hitting Time Backwards [10]

What is the expected hitting time from state n to state 0?

1
p

+ 1
q
. You can observe this by seeing that if you start from n, the expected time

to be done is the expectation of a geometric series. Moreover, the expected time to
leave done is also a geometric series of parameter q!

(c) Hitting Time Forward [10]

Suppose p = q = 1
2
. What is the expected hitting time from state 0 to state n?

Hint: Use parts (a) and (b).
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Let

• T+
n be the return time from state n to state n.

• T0,n be the hitting time from state 0 to state n.

• Tn,0 be the hitting time from state n to state 0.

Then

T+
n = Tn,0 + T0,n

T0,n = T+
n − Tn,0

Using our answers to part (a) and (b)

E[T0,n] = E[T+
n ]− E[Tn,0]

=
1

π(n)
−
(1

p
+

1

q

)
=

1

q(1− p)n p
p+q

− 1

p
− 1

q

Substituting our values, we get

E[T0,n] =
1

1
2
(1− 1

2
)n

1
2

1
2
+ 1

2

− 1
1
2

− 1
1
2

= 4 · 2n − 4

= 4(2n − 1)

Alternate Solution
Fact: If xn+1 = axn + b, then xn = anx0 +

∑n−1
i=0 a

ib = anx0 + b1−a
n

1−a

Let B(n) be the expected hitting time from state 0 to state n. We can set up the
following recurrence relation.

B(n+ 1) = B(n) + 1 + p ·
(1

q
+B(n+ 1)

)
The idea is that we need to reach n first and then make 1 more move. With proba-
bility 1− p we move to n+ 1, but with probability p, we go to Done, and then take
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in expectation 1
q

steps before we can try again.(
1− p

)
B(n+ 1) = B(n) + 1 +

p

q(
1− p

)
B(n+ 1) = B(n) +

p+ q

q

B(n+ 1) =
1

1− p
B(n) +

p+ q

q(1− p)

For our problem, this means

B(n+ 1) =
1

1− 1
2

B(n) +
1
2

+ 1
2

1
2
(1− 1

2
)

= 2B(n) + 4

Applying the fact and knowing that B(0) = 0, we get that

B(n) = 2n · 0 + 4 · 1− 2n

1− 2

= 4(2n − 1)
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4 Last Arrival [26]

Suppose we have a two independent Poisson Processes X and Y with arrival rates λ and 2λ,
respectively.

(a) X or Y? [6]

What is the probability that the last arrival for Y comes after the last arrival for X in
some given time interval (0, t)?

We intended this answer to be 2
3

since we can consider the probability that the last
arrival is from Y . However, based on how this question was worded there’s a subtle
issue: knowing that there were arrivals from both X and Y in a finite time interval
changes the probability. If the question asked the probability that the first arrival
from Y came before the first arrival from X (and not in some finite time interval),
then the answer would indeed by 2

3
. To make it also true for the last arrivals, we

need to make the Poisson Process reversible, which requires that we look at some
point infinitely far in the future.

(b) Expected Arrivals Afterwards [10]

Suppose we are given that NY (t) = n. What is the expected number of arrivals N from
X after the last arrival from Y on (0, t)?

Let T be the time between the n-th arrival time for Y and t. A couple observations:

• The n-th arrival time from Y is distributed as the maximum of n independent
U [0, t] RVs.

• The number of arrivals from X in any time interval of length T is Poisson with
parameter λT .

Therefore,

E[N ] = E[E[N | T ]]

= E[λT ]

= λE[T ]

= λ(t− n

n+ 1
t)

=
λ

n+ 1
t

(c) Chernoff Bound [10]

Provide an upper bound using the Chernoff bound on the probability that the total
number of arrivals from X and Y in the interval (0, t) exceed kλt for some positive
integer k. Express your answer in terms of k and simplify your answer as much as
possible.
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Hint: The MGF for a Poisson random variable X with parameter λ is MX(s) =
exp(λ(es − 1)).

P (X + Y ≥ kλt) ≤ min
s

MX+Y (s)

eksλt

= min
s

exp(3λt(es − 1))

eksλt

= min
s

exp(λt(3es − ks− 3))

The find the optimal s value, we can just minimize the exponent since exp is mono-
tonically increasing.

d

ds
λt(3es − ks− 3) = 0 = 3λtes − kλt

We can set s = ln k
3

to satisfy the equation.

Now, we plug s to get our upper bound.

P (X + Y ≥ kλt) ≤ exp(λt(k − k ln
k

3
− 3))
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5 Continuous Time Markov Chains [14]

Consider the following CTMC for r > 0.

N

W E

S

r
3

2

11

(a) Stationary Distribution [7]

For the above CTMC, find the stationary distribution in terms of r, where r > 0.

π(S) = 0 since it’s transient. Considering just N, E, and W, we know that the
jump chain has stationary distribution 1

3
in every state. To convert this stationary

distribution to that of the CTMC, we multiply 1
3

by the expected time we stay in
each state before leaving and then re-normalize. So it turns out

π =
1

1
r

+ 1
2

+ 1
3

[
1
r

1
2

0 1
3

]
=

6r

6 + 2r + 3r

[
1
r

1
2

0 1
3

]
Alternate Solution
Order our states N, E, S, W. Our Q matrix is the following.

Q =


−r r 0 0
0 −2 0 2
0 1 −2 1
3 0 0 −3


Use columns 1, 2, 3 and the normalizing equation

∑
π(i) = 0 to get the following

system.

−r · π(N) + 3π(W ) = 0

r · π(N)− 2π(E) + π(S) = 0

−2π(S) = 0

π(N) + π(E) + π(S) + π(W ) = 1

• π(S) must be 0.
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• Equation 1 tells us that π(N) = 3
r
π(W ).

• Adding equation 1 and 2 tells us that 3π(W ) = 2π(E) or that π(W ) = 2
3
π(E).

Combining into equation 4 we get that

3

r
· 2

3
· π(E) +

2

3
· π(E) + π(E) = 1(2

r
+

2

3
+ 1
)
π(E) = 1

6 + 2r + 3r

3r
π(E) = 1

π(E) =
3r

6 + 2r + 3r

This leads to a final stationary distribution of

π =
[

6
6+2r+3r

3r
6+2r+3r

0 2r
6+2r+3r

]
(b) Equivalent DTMC [7]

Draw a DTMC with the same state space with the same stationary distribtion as the
above CTMC. If necessary, draw multiple DTMCs depending on the value of r.

For any q ≥ sup q(i), P = Q
q

+ I defines a valid DTMC probability transition matrix
with the same stationary distribution. Let our q = r + 3. Then

P =


3
r+3

r
r+3

0 0

0 r+1
r+3

0 2
r+3

0 1
r+3

r+1
r+3

1
r+3

3
r+3

0 0 r
r+3


is the DTMC we’re looking for.
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