
Modes of Convergence

EECS 126 at UC Berkeley

Spring 2022

Now that we are able to characterize individual random variables, let us consider sequences of random variables. The

first and foremost ideas that arise in the study of sequences are the limit and the related convergence.

The classical convergence of a sequence of real numbers (xn)
∞
n=1 to a limit x is described by “eventually [∀n ≥ N ],

any deviation [|xn − x|] can be made arbitrarily small [< ε].” The classical convergence of a sequence of real-valued

functions (fn)
∞
n=1 is the exact same idea — pointwise convergence, “at every point t in the domain, fn(t) → f(t) as

real numbers.”

Throughout, let ε > 0, let (Ω,F ,P) be a shared probability space, and let (Xn)
∞
n=1 be a sequence of real-valued

random variables. We note that Xn : Ω → R are also real-valued functions, so they have a notion of pointwise

convergence (to some random variable X : Ω → R). The points are ω ∈ Ω, reflecting the fact that we can evaluate

X1, X2, X3, . . . at different ω to get different “realizations” of the sequence.

But rarely can we say that a statement is true for every single outcome ω ∈ Ω — such is far too “deterministic,” and

does not involve the probability measure P at all. The next strongest form of convergence available to us, then, is

that Xn → X with complete certainty, i.e. with probability 1, or almost surely. Yet, as we might expect, introducing

probability into convergence results in some additional complexity.

In this note we discuss a few common modes of convergence of sequences of random variables: almost sure

convergence, convergence in probability, and convergence in distribution. It turns out there is a chain of strict

implications for modes of convergence:

almost sure =⇒ in probability =⇒ in distribution.

We also give some prominent examples in the Strong Law of Large Numbers, the Weak Law of Large Numbers, the

Central Limit Theorem, the Borel-Cantelli lemma, and the Poisson Limit Theorem.

1 Almost sure convergence

Definition 1. (Xn)
∞
n=1 converges almost surely (a.s.) to X if

P
({

ω ∈ Ω : lim
n→∞

Xn = X
})

= 1.

This is denoted Xn
a.s.−→ X. An equivalent definition is if P(limn→∞ Xn ̸= X) = 0.
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Example 1. Let Ω = [0, 1], and let P be the uniform probability measure on Ω so that P([a, b]) = b − a. Define

Xn ∼ n · Bernoulli( 1n ), more specifically Xn(ω) = n · 1ω∈[0, 1
n ], and X(ω) = 0 for all ω ∈ Ω. Then Xn

a.s.−→ X.

i. For every nonzero ω, there is some N ∈ N such that 1
N < ω. [This is the Archimedean property of R.] In other

words, for all n ≥ N , ω falls outside of [0, 1
n ], so Xn(ω) = 0. Thus Xn(ω) → X(ω).

ii. However, at ω = 0, Xn(0) = n for every n ≥ 1, but X(0) = 0, so Xn(0) ↛ X(0).

Therefore P({ω ∈ Ω : limn→∞ Xn = X}) = P(Ω \ {0}) = P((0, 1]) = 1, so we have shown a.s. convergence.

Almost sure convergence is the strongest form of convergence we usually work with. Its statement is fairly strong

already — “the probability of convergence is 1.” The concept of almost surely also exists more generally: a key

philosophy in probability theory (and measure theory) is to disregard sets with zero measure. If two random variables

only disagree on a null set, P(X ̸= Y ) = 0, i.e. P(X = Y ) = 1, then they are equal almost surely. The probability of

an event being 1 is more important than whether it includes every single outcome ω ∈ Ω.

It may be difficult to show a.s. convergence in general, so we present two main results that are commonly used to

prove a.s. convergence.

Theorem 1 (Strong Law of Large Numbers). If (Xn)
∞
n=1 are independent and identically distributed (i.i.d.) with

finite mean |E(X1)| < ∞, then the sample mean X̄n converges almost surely to the true mean. That is,

X̄n =
1

n

n∑
i=1

Xi
a.s.−→ E(X1).

The SLLN is celebrated in part due to its very weak assumptions, and in part due to its strong conclusion (a.s.). You

may find a proof of a slightly weaker form of the SLLN assigned to you as homework, involving fourth moments and

the following general result.

Theorem 2 (Borel-Cantelli Lemma). Let (An)
∞
n=1 be a collection of events. The event that An happens infinitely

often is given by

An i.o. = lim sup
n→∞

An =

∞⋂
n=1

⋃
k≥n

Ak.

[If ω ∈ An i.o., then for every n ≥ 1, there exists a greater index k ≥ n such that ω ∈ Ak. Otherwise, there is a

maximum index N so that ω /∈ Ak for any k ≥ N , i.e. ω only appears in finitely many An.]

i. If
∑∞

n=1 P(An) < ∞, then P(An i.o.) = 0.

ii. If
∑∞

n=1 P(An) = ∞ and (An)
∞
n=1 are independent, then P(An i.o.) = 1.

If we define An := {ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ε}, then we can verify that An i.o. is the event the sequence diverges,

{limn→∞ Xn(ω) ̸= X(ω)}! So, if
∑∞

n=1 P(An) < ∞, then P(An i.o.) = 0, i.e. Xn
a.s.−→ X. Thus the first Borel-Cantelli

lemma is a common way of proving almost sure convergence.

As examples, we may also see almost sure convergence in the following contexts:
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• In a discrete-time Markov chain, the proportion of time spent in a state converges a.s. to the inverse of the

expected time it takes to revisit said state (given a few assumptions).

• If (Xn)
∞
n=1 are i.i.d. over a finite alphabet, then the average surprise − 1

n log2 p(X1, . . . , Xn) converges a.s. to

the entropy H(X). This is called the asymptotic equipartition property.

• In machine learning, we can ask if the iterates of the stochastic gradient descent algorithm converge a.s. to the

true minimizer of the given function.

2 Convergence in probability

Definition 2. (Xn)
∞
n=1 converges in probability (i.p.) to X if for every ε > 0,

lim
n→∞

P(|Xn −X| ≥ ε) = 0.

This is denoted Xn
P−→ X.

Limits and probabilities commute when a sequence is monotone [see note #1 on probability], but not in general. So

we cannot always exchange lim and P, and convergence i.p. is a different condition from convergence a.s. Particularly,

convergence i.p. is a statement about an “eventual probability” of deviation, while convergence a.s. is about a

probability of an “eventual event.” We will clarify the difference in the following example.

Example 2. Let Xn ∼ Bernoulli( 1n ), n ≥ 1 be independent, and let X ∼ 0. Then Xn converges to X in probability,

but not almost surely.

Proof. [If ε > 1, then P(|Xn −X| ≥ ε) = 0 for every n ≥ 1.] If 0 < ε ≤ 1, then the probability of deviation

P(|Xn −X| ≥ ε) = 1
n tends to 0 as n → ∞, so we have convergence i.p.

To show that the Xn do not converge almost surely, we apply the second Borel-Cantelli lemma, noting that the

harmonic series
∑∞

n=1 P(An) =
∑∞

n=1
1
n = ∞, and the events are independent. In fact, by our remarks above, this

shows that Xn diverges almost surely!

What is the difference between this example and the previous example of a.s. convergence? The assumption of

independence. In the previous example, we could find the set of outcomes on which Xn deviates explicitly as the

event [0, 1
n ] → {0}. Here, however, we could not. The outcomes with deviation are more “randomly dispersed,” and it

turns out that this set of outcomes approaches an event with probability 1!

More generally, we summarize the distinction that “convergence i.p. only describes the convergence of the probability

values of events, but a.s. convergence describes the convergence of the underlying events.” ■

Almost sure convergence does imply convergence in probability. We can visualize the following proof if we draw a

table with ω as rows, Xn as columns, and entries filled if |Xn(ω)−X(ω)| ≥ ε. Then An concerns a region extending

infinitely to the right, while Bn covers the leftmost column within An. As we increase n, the probability of a filled

entry being inside An approaches zero by a.s. convergence, so it does the same for Bn ⊆ An.
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Proof. Let Xn
a.s.−→ X. For n ≥ 1, we define the events

An := {ω ∈ Ω : for some m ≥ n, |Xm(ω)−X(ω)| ≥ ε} ,

Bn := {ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ε} .

We wish to show that P(Bn) → 0. We note that An ⊇ Bn, so by monotonicity, it is enough to show P(An) → 0.

• Xm(ω) converges if there is some N so that for no m ≥ N does |Xm(ω)−X(ω)| ≥ ε. Thus we observe that

limn→∞ An is the event that Xn diverges. By a.s. convergence, P(limn→∞ An) = 0.

• A1 ⊇ A2 ⊇ A3 ⊇ · · · , because if |Xm(ω)−X(ω)| ≥ ε, then ω belongs to every An, n ≤ m, but not necessarily

n > m. Probability preserves decreasing limits, so limn→∞ P(An) = P(limn→∞ An).

Therefore we have convergence in probability by

lim
n→∞

P(Bn) ≤ lim
n→∞

P(An) = P
(
lim

n→∞
An

)
= 0.

■

Convergence i.p. is easier to prove directly from its definition than a.s. convergence. You may come across several

examples in your homework; we will give a more famous example below.

Theorem 3 (Weak Law of Large Numbers). Let (Xn)
∞
n=1 be as described in the SLLN. Then the sample mean X̄n

converges in probability to the true mean:

X̄n
P−→ µ.

The WLLN is implied by the SLLN with the given assumptions, but the weak law actually holds in more general

cases than the strong law, making the WLLN its own law and not just a corollary.

3 Convergence in distribution

Definition 3. (Xn)
∞
n=1 converges in distribution (i.d.) to X if for every x ∈ R with P(X = x) = 0,

lim
n→∞

P(Xn ≤ x) = P(X ≤ x).

This is denoted Xn
d−→ X.

If the Xn are discrete, convergence i.d. is also equivalent to the convergence of the pmf, pXn
→ pX . If the Xn are

continuous, convergence i.d. is (strictly) implied by the convergence of the pdf, fXn
→ fX .

You may notice that this is a weaker form of convergence. Its statement is “eventually, the values of Xn resemble

values drawn from the distribution of X.” However, it says nothing about the actual values drawn from limn→∞ Xn

and X, in particular about their deviations. We illustrate this idea in the following example.

Example 3. Convergence in distribution does not imply convergence in probability. Let Ω = [0, 1] with the uniform

probability measure as before. Let Xn ∼ Uniform([0, 1]), more specifically X2k(ω) = ω and X2k+1(ω) = 1− ω, and
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let X(ω) = ω. Then Xn
d−→ X trivially, as they share the same distribution, but the probability of deviation

P(|Xn −X| ≥ ε) oscillates between zero and a nonzero value, so it cannot tend to 0.

However, convergence in probability does imply convergence in distribution. The key idea is that the probability of

deviation P(|Xn −X| ≥ ε) tending to zero allows us approximate the event {Xn ≤ x} by {X ≤ x}.

Proof. Suppose that Xn
P−→ X. We can observe graphically that for all n ≥ 1,

P(Xn ≤ x) ≤ P(X ≤ x+ ε) + P(|Xn −X| ≥ ε)

P(X ≤ x− ε) ≤ P(Xn ≤ x) + P(|Xn −X| ≥ ε).

As n tends to infinity, convergence i.p. gives us the inequality

P(X + ε ≤ x) ≤ P(Xn ≤ x) ≤ P(X − ε ≤ x).

ε > 0 can be made arbitrarily small, so we have shown convergence i.d. ■

We will state the most common example of convergence i.d., one version of one of the most ubiquitous theorem in

statistics, which is often used in confidence intervals and to justify the importance of the normal distribution. Similar

results exist for other statistical distributions, such as chi-squared or Student’s t.

Theorem 4 (Central Limit Theorem). If (Xn)
∞
n=1 are i.i.d. with mean µ and variance σ2, then the standard score

of the sample mean X̄n converges in distribution to the standard normal distribution. That is,

X̄n − µ√
σ2

n

d−→ N (0, 1).

Without a careful look, the following two results of convergence i.d. may appear to contradict the Central Limit

Theorem, but notice that their random variables are not identically distributed. We leave their proofs as discussion

problems or exercises; you may find the identity limn→∞(1− λ
n )

n = e−λ helpful.

Theorem 5 (Poisson limit theorem). Let Xn ∼ Binomial(n, pn), where limn→∞ npn is equal to the constant λ > 0,

and let X ∼ Poisson(λ). Then Xn
d−→ X.

The Poisson limit theorem is also called the law of rare events, and it justifies the use of Poisson distributions in

modelling rare occurrences. Many other situations, such as popular random graph models or balls and bins especially,

also have Poisson limits.

Theorem 6 (Limit of geometric distribution). Let Xn ∼ Geom(pn), where limn→∞
pn

n is equal to the constant λ > 0,

and let X ∼ Exponential(λ). Then Xn
d−→ X.

The following section is fairly interesting but entirely supplemental.
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4 Convergence in expectation

Definition 4. (Xn)
∞
n=1 converges in expectation (or in mean, or in L1-norm) to X if

lim
n→∞

E(Xn) = E(X), equivalently lim
n→∞

E(|Xn −X|) = 0.

This is denoted Xn
E−→ X.

This mode of convergence is somewhat anomalous for us. We might expect that convergence in distribution implies

convergence in expectation, because “expectation is a feature of the distribution.” However, in general, none of

convergence a.s., i.p., or i.d. imply convergence in expectation.

Example 4. Consider Xn
a.s.−→ X as in example 1. However, E(Xn) =

1
n · n = 1 is constant for every n ≥ 1, but

E(X) = 0, so E(Xn) ↛ E(X).

This counterexample may seem troubling, because expectation is equivalent up to almost sure equivalence, yet

limn→∞ Xn
a.s.
= X does not imply limn→∞ E(Xn) = E(X) — we conclude that E and lim do not always commute.

The key to the divergence in expectation is that even as the probability of eventual deviation tends to zero, the value

of said deviation can grow unboundedly. If instead Xn ∼ 2n · Bernoulli( 1n ), then E(Xn) =
2n

n → ∞!

If we suppose that Xn
a.s.−→ X, then there turns out to be two quite strong conditions that imply convergence in

expectation: if the Xn form a nondecreasing sequence, or if the Xn are bounded.

i. Monotone convergence theorem. If 0 ≤ X1 ≤ X2 ≤ X3 ≤ · · · , then Xn
E−→ X.

ii. Dominated convergece theorem. If there exists a nonnegative random variable Y ≥ 0 with E(|Y |) < ∞
such that |Xn| ≤ |Y | for all n and |X| ≤ |Y |, then Xn

E−→ X.

The convergence of sequences of functions is in general quite complex, and is explored in depth in fields such as

measure theory or functional analysis. We will only state a few relevant, interesting results without proof.

a. Continuous mapping theorem. Let f be continuous, often log or exp. Then f preserves convergence a.s.,

i.p., and i.d.: that is, if Xn → X, then f(Xn) → f(X) in the same manner.

b. Slutsky’s theorem. If Xn
d−→ X and Yn

P−→ c for some constant c, then Xn + Yn
d−→ X + c, XnYn

d−→ cX,

and Xn/Yn
d−→ X/c.

c. Convergence in expectation implies convergence in probability.

d. Convergence in distribution implies that E(g(Xn)) → E(g(X)) if g is bounded and continuous. [Note that the

identity function is not bounded, so convergence in expectation is not included.]

e. Convergence in L2-norm [E(|Xn −X|2) → 0] implies convergence in L1-norm. In general, convergence in

Lp-norm implies convergence in Lq-norm for all 1 ≤ q ≤ p < ∞.

■
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