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1 Motivation

At this point in your probability career, you’ve likely encountered some very
interesting ideas relating to discrete time Markov chains. However, there is a
slight problem. The real world operates in continuous time, so many random
processes that you might want to study as an engineer or computer scientist
must use the language of continuous time systems.

In our attempts to build up to a treatment of continuous time Markov
processes, we start with Poisson processes, which in some sense is the simplest
continuous time Markov chain that you might wish to study. On the other
hand, we will soon see that Poisson processes have many amazing properties
that make them an indispensable tool for modeling.

2 Construction

Suppose that you’re waiting at a bus station and observe that no matter how
long you’ve been waiting for the next bus, it always seems to be around 5
minutes until the next bus comes. Recall the memoryless property of the
exponential distribution:

If X ∼ Exponential(λ), then P(X > t+ s | X > t) = P(X > s)
Returning to our modeling problem before, you can model the memo-

ryless nature by stating that the time it takes for the next bus to come is
exponentially distributed with parameter λ := 5min.

This leads us to our formal definition:

Definition 1. Fix some λ > 0 and sample interarrival times S1, S2, S3, . . . ∼iid

Exp(λ). For each n ≥ 1 define Tn =
∑n

j=1 Sj for n ≥ 1. The function
N(t) = max{n ≥ 0 : Tn ≤ t} represents the number of arrivals at time t. We
call the sequence {N(t)}t≥0 a Poisson process with rate λ. The distribution
of such processes is denoted PP (λ).
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Tying the definition above back to our earlier analogy, the time between
the i − 1st bus and the ith bus is the interarrival time Si, and the ith bus
appears after Ti units of time. The Poisson process N(t) counts the number
of buses that have appeared by time t.

Sometimes, instead of starting the process at 0, we want to consider the
number of arrivals in an interval starting at some arbitrary time. To do that,
we introduce some new notation:

Definition 2. For a Poisson process with rate λ, we define N(t1, t2) :=
N(t2)−N(t1) for t2 ≥ t1 to be the number of arrivals in the interval [t1, t2].

Note that we are “overloading” N here. When we write N(t) as a function
with one argument, we mean the number of arrivals in the interval [0, t], while
writing N(t1, t2) as a function with two arguments describes the number of
arrivals in the interval [t1, t2]. Finally, we sometimes refer to the number of
arrivals in an interval N(t1, t2) as an increment, especially in context of the
stationary and independent increments property that we describe in the next
section.

3 Equivalent Characterization

The previous section gave a construction of Poisson processes that matches
with our mental picture of counting the number of arrivals in time. The
memoryless property of the exponential gives Poisson processes many amazing
properties. We then finish off this section with an alternative construction of
Poisson processes.

Theorem 1. A Poisson process {N(t)}t≥0 ∼ PP (λ) satisfies the following
properties:

1. Stationary increments: For every t, s > 0, N(t, t+ s)
d
= N(s); namely,

N(t, t+ s) has the same distribution as N(s).

2. Independent increments: For 0 < t1 < · · · < tk, the set of random
variables N(t1), N(t1, t2), . . . , N(tk−1, tk) are jointly independent.

3. N(t) ∼ Poisson(λt)

The next few sections will prove these theorems.
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3.1 Proving Stationary and Independent Increments

To show that the stationary independent increment properties hold, we first
need to establish the following claim:

Lemma 1. Let {N(t)}t≥0 ∼ PP (λ) and fix some time t > 0. Define the
random variable Z as the amount of time elapsed until the first arrival after
the time t. Then the following properties hold:

1. Z ∼ Exp(λ)

2. Z is independent of all interarrival times before time t

3. Z is independent of {N(s)}0≤s≤t

We relegate the proof to Appendix A.1.1.

Theorem 2. A Poisson process has stationary increments.

The proof can be found in Appendix A.1.2.

Theorem 3. A Poisson process has independent increments.

The proof can be found in Appendix A.1.3.

3.2 Erlang Distribution and pmf of N(t)

While we already know the densities of the interarrival times {Si}∞i=1 as
they are just exponentially distributed, we do not have a density for the
arrival times Tn. Note that Tn is just a sum of n i.i.d. exponential random
variables, which means that we can compute the distribution by convolving
the pdfs. The resulting distribution is called the Erlang distribution, denoted
Erlang(n;λ).

Let Tn be the nth arrival time for a Poisson process with parameter λ.
Then,

fTn(t) =
λntn−1e−λt

(n− 1)!
.

Proof. The joint distribution fT1,...,Tn(t1, . . . , t) can be rewritten as the joint
distribution of interarrival times fS1,S2,...,Sn(t1, t2 − t1, . . . , t− tn−1).

fT1,T2,...,Tn(t1, t2, . . . , t) = fS1,S2,...,Sn(t1, t2 − t1, . . . , t− tn−1)1{t1≤...≤t}

3



= fS1(t1) · fS2(t2 − t1) . . . fSn(t− tn−1)1{t1≤...≤t}

= (λe−λt1) · (λe−λ(t2−t1)) . . . (λe−λ(t−tn−1))1{t1≤...≤t}

= λne−λt
1{t1≤...≤t}

where the indicator variable above is due to the fact that if ti < ti−1, then
the density of Si is 0; e.g. the ith arrival can’t occur before the i− 1st arrival.
Note, amazingly, there is no dependence on the values of t1, . . . , tn−1.

Finally, we can calculate fTn(t) by integrating over all possible values of
t1, t2, . . . , tn−1 with the constraint that t1 < t2 < · · · < tn−1.

fTn(t) =

∫
· · ·
∫
t1≤t2≤···≤tn−1≤t

fT1,T2,...,Tn−1,Tn(t1, t2, . . . , tn−1, t) dt1dt2 . . . dtn−1

=

∫
· · ·
∫
t1≤t2≤···≤tn−1≤t

λne−λt dt1dt2 . . . dtn−1

Now, observe that the integrand is constant with respect to t1, . . . , tn−1. Also
note that the volume of the hypercube [0, t]n−1 is tn−1. However, the integral
is supported only the part of the hypercube where t1 ≤ t2 ≤ . . . ≤ tn−1. As
there are (n− 1)! permutations of these items, and each permutation slices
out a equal volume of the hypercube, then the volume of the support is
tn−1/(n−1)!. This means that the value of the integral is λntn−1e−λt/(n−1)!,
which was the form for the density we claimed.

Theorem 4. For a Poisson process {N(t)}t≥0 ∼ PP (λ), we have N(t) ∼
Poisson(λt) for t > 0. Explicitly, the probability of n arrivals in time t is

P(N(t) = n) =
(λt)ne−λt

n!
.

Proof. We can consider two ways to calculate P(t < Tn+1 < t + δ), the
probability the (n+ 1)th arrival arrives in [t, t+ δ].

One way is to integrate over the density of Tn+1, the Erlang(n + 1;λ)
distribution:

P(t < Tn+1 < t+ δ) =

∫ t+δ

t

fTn+1(τ)dτ ≈ fTn+1(t)δ
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Another way of computing P(t < Tn+1 < t + δ) is by splitting up the
sample space by the number of arrivals in [t, t+ δ]:

P(t < Tn+1 < t+ δ)

= P(N(t) = n,N(t, t+ δ) = 1) +
n+1∑
k=2

P(N(t) = n+ 1− k,N(t, t+ δ) = k)

= P(N(t) = n)P(N(t, t+ δ) = 1) +
n+1∑
k=2

P(N(t) = n+ 1− k)P(N(t, t+ δ) = k)

The last equality holds due to the independent increments property.
The probability of more than one arrivals in a small interval δ and the

probability of one arrival in a small interval δ is λδ. Derivations of these
claims can be found in Appendix A.1.4.

Then,

P(t < Tn+1 < t+ δ) ≈ P(N(t) = n) · P(N(t, t+ δ) = 1)

≈ P(N(t) = n)δλ

Equating the two expressions, we can solve for P(N(t) = n), the probability
of n arrivals in t time:

P(N(t) = n) =
fTn+1(t)δ

δλ
=

(λt)neλt

n!

For the above proof to be formally correct, we need to carry error terms
o(δ). Little-o notation is used to represent terms that approach 0 faster than

linearly as δ approaches 0. In math, this can be expressed as limδ→0
o(δ)
δ

= 0.
For the full proof, refer to Appendix A.1.4.

3.3 Proving Equivalence

We have shown all the parts of Theorem 1. To recap, we showed that a
Poisson process has the stationary and independent increments property, and
the number of arrivals in t units of time is distributed according to a Poisson
distribution. Amazingly, these properties uniquely characterize the Poisson
process with parameter λt.
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Theorem 5. Let S1, S2, . . . be some set of almost-surely positive1 interarrival
times and define Tn =

∑n
j=1 Sj and N(t) = max{n ≥ 0 : Tn ≥ t}. If

it the process {N(t)}t≥0 has stationary and independent increments, and
P(N(t) = n) = (λt)ne−λt/n! for all t ≥ 0. Then it follows that S1, S2, . . . are
i.i.d. exponential random variables with parameter λ.

Proof. Let’s compute the complementary cdf of Sn conditioned on {S1 =
s1, . . . , Sn−1 = sn−1}. Defining tn−1 =

∑n−1
j=1 sn−1, we see

P(Sn > s | S1 = s1, . . . , Sn−1 = sn−1)

= P(Sn > s | {N(t)}0≤t≤tn−1)

= P(N(tn−1, tn−1 + s) = 0 | {N(t)}0≤t≤tn−1)

= P(N(tn−1, tn−1 + s) = 0)

= P(N(s) = 0)

= e−λs

using the fact that specifying {S1, . . . , Sn−1} fully specifies the counting pro-
cess N(t) until time tn−1 and vice versa; we then use the independent 2 and
stationary increments property. We conclude that Sn ∼ Exponential(λ), inde-
pendent of {S1, . . . , Sn}. Performing an induction on n in the same manner as
in the proof for Theorem 3 lets us conclude S1, S2, . . . ∼iid Exponential(λ).

Let’s take a moment to reflect upon the power of what we’ve established.
We have just shown two equivalent characterizations of Poisson processes,
meaning that we can switch between these two perspectives at will. For
example, if we were writing a simulation to model a Poisson process, the first
characterization looking at sums of exponential random variables is much more
convenient to implement. On the other hand, the second characterization using
independent and stationary increments lets us prove theorems about Poisson
processes more directly. The utility of having both viewpoints available to us
will apparent in the next few sections.

1to avoid the having two arrivals at the same time
2An eagle-eyed reader might notice that the definition of independent increments requires

us to consider finitely many time instants, while the interval [0, tn−1] has uncountably
many elements. It turns out the technical definition of independence of a random process
is to consider an arbitrary finite collection of time instants, so our logic still holds. These
technicalities are beyond the scope of EECS 126, but if you’re interested in the details,
EECS 226A covers them more in depth.
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4 Merging

Now that we have our two viewpoints, we can start using them to prove some
properties of Poisson processes. Suppose instead of buses, we are sitting at a
bench watching cars and trucks pass by, where both the cars and trucks appear
according to independent Poisson processes. How does the total number of
vehicles that pass by behave? It turns out that this is also a Poisson process!

Theorem 6 (Poisson Merging). Let N ∼ PP (λ) and M ∼ PP (µ) indepen-
dent of N . Then, N +M ∼ PP (λ+ µ).

In order to show that L := N +M is a Poisson process, we need to show
that it has independent and stationary increments, and the number of arrivals
in any interval has a Poisson distribution. Details of this proof can be found
in Appendix A.2.

The merging property makes Poisson processes incredibly useful to for
modeling. If two independent processes have the independent and stationary
increments properties, we can model them as Poisson processes separately.
Poisson merging tell us that the combined process will be a sum of the rate
parameters and will also have independent and stationary increments. We
get all of this information for free without needing to find the new rate
parameter.

5 Splitting

We just saw that given some independent Poisson processes, we can combine
them into a single Poisson process. This leads to an interesting follow-up
question: is the reverse possible? Can we take a single Poisson process and
divide it into a set of independent Poisson processes? Amazingly, the answer
is yes.

Consider having packet arrivals come according to a Poisson process. If
each arrival is independently routed to a different server, then the number
of packets hitting each server are also Poisson processes. This is known as
poisson splitting and is illustrated in Figure 1.

Theorem 7 (Poisson Splitting). Let N ∼ PP (λ) be a Poisson process and
let B1, B2, . . . ∼iid Bernoulli(P ) independent of N . Let N0(t) = |{i : Bi =
0, i ≤ N(t)}| and N1(t) = |{i : Bi = 1, i ≤ N(t)}| (e.g. each arrival to N(t)
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Figure 1: Each arrival is independently routed to server A with probability p
and to B with probability 1− p.

is routed to N0(t) or N1(t) according to independent Bernoulli trials). Then
N0(t) ∼ PP (λp), N1(t) ∼ PP (λ(1 − p)), and the processes N0 and N1 are
independent of each other.

The proof can be found in Appendix A.3.
Splitting is the second half of what makes Poisson processes so useful. We

can envision a scenario where we are a network engineer and we find that
we have requests of different types hitting our load balancer according to
Poisson processes, and then our load balancer randomly routes the packets
to different servers, which themselves may route the packets with different
probabilities. Yet however complex our system is, if we model the incoming
traffic as Poisson processes, then we can easily compute how much load we
expect each server to experience by using Poisson merging and splitting. This
is the basis for the study of Jackson networks and other queuing systems.

6 Random Incidence Property

Consider a Poisson Process {N(t)}t≥0 ∼ PP (λ) that has been running for a
long time. We can consider the following questions:

1. What is the expected interarrival time in the Poisson process?

2. Suppose we fix an arbitrary3 time in the process, t. What is the expected
length of the interarrival interval which t falls into?

From a first glance, these seem like the same question, since both are
asking for the expected interarrival time. One might conclude that both

3e.g. from a distribution independent from the Poisson process
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are 1/λ, the expectation of an Exponential(λ) random variable. Perhaps
surprisingly, this is not the case for the second question. Let’s dig into why.

Say that t falls between the ith and i + 1th arrivals, which happen at
time Ti and Ti+1, respectively. If there has been no arrivals before t, then set
Ti = 0. We can write

Ti+1 − Ti = (t− Ti) + (Ti+1 − t)

We know that the second term, Ti+1 − t, is exponentially distributed with
parameter λ, by Lemma 1, so E[Ti+1 − t] = 1/λ. We then want to find the
distribution of the first term, t−Ti. To do that, we find the the complementary
cdf P(t− Ti > τ) for 0 ≤ τ ≤ t as

P(t− Ti > τ) = P (N(t− τ, t) = 0)

= P (N(τ) = 0)

=
(λτ)0e−λτ

0!
= e−λτ

using the stationary increments property. However, when τ > t, then the
complementary cdf is 0 because Ti cannot be negative; thus we have comple-
mentary cdf

P(t− Ti > τ) =

{
e−λτ 0 ≤ τ ≤ t

0 τ > t

We see that t− Ti is approximately Exponential(λ), and we can compute the
exact expectation using the tail-sum formula as

E[t− Ti] =

∫ ∞

0

P(t− Ti > τ) dτ

=

∫ t

0

e−λτ dτ

=
1− e−λt

λ

so

E[Ti+1 − Ti] = E[t− Ti] + E[Ti+1 − t] =
1− e−λt

λ
+

1

λ

t→∞−→ 2

λ
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In the limit as t → ∞, corresponding to a Poisson process that has been
running for an infinitely long time before the observation at time t, the
expected length of the interarrival time tends to 2/λ. This is twice the
expectation of the interarrival time! How can we explain this?

One way of rationalizing this is that in a Poisson process, there will
be longer and shorter interarrival intervals. Since we are choosing our t
randomly, it’s more likely to land in a longer interval than a short one
regardless of the distribution of choosing t. Thus, each interval is chosen with
a weighted probability. Longer intervals have a better chance to be chosen,
while shorter intervals have a lower chance. If you take the weighted average,
we should expect an interval picked under this biased scheme to have a greater
expectation than normal! This is known as the Random Incidence Property,
abbreviated as RIP.

A Appendix

A.1 Independent and Stationary Increments

A.1.1 Memoryless Property of Poisson Processes (Lemma 1)

Proof. To find the distribution of Z, we can condition on the number of
arrivals at time t and the previous arrival time.

P(Z > z | N(t) = i, Ti = τ) = P(Si+1 > z + (t− τ) | Si+1 > t− τ, Ti = τ)

= P(Si+1 > z + (t− τ) | Si+1 > t− τ)

= P(Si+1 > z)

= e−λz

Above, we use the fact that Si+1 is independent of Ti =
∑i

j=1 Si, interarrival
times being independent, to remove the conditioning on Ti, then leverage the
memoryless property of the Exponential distribution. Because the conditional
ccdf of Z does not depend on i or τ , we conclude that this is the unconditional
ccdf of Z. Shown explicitly,

P(Z > z) =
∞∑
i=1

∫ ∞

0

P(Z > z | N(t) = i, Ti = τ)P(N(t) = i, Ti = τ)dτ

= e−λz

∞∑
i=1

∫ ∞

0

P(N(t) = i, Ti = τ)dτ = e−λz
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As this is the complementary cdf of an Exponential distribution, we conclude
Z ∼ Exponential(λ). This proves property (1) above.

The previous derivation showed that the conditional distribution of Z
given N(t) = i and Ti = τ did not depend on i and τ , implying that Z is
independent of these quantities. In fact, we can repeat the previous derivation
where we additionally condition on T1 = τ1, . . . , Ti−1 = τi−1; however, the
same steps shows that the distribution of Z still does not depend on these
quantities, so we conclude that Z is independent of the set of arrival times.

Now, note that the set of interarrival times before t and {N(s)}s≤t are
both fully determined by specifying the arrival times, so we conclude that Z
is independent of these as well. Thus properties (2) and (3) above hold as
well.

A.1.2 Stationary Increments Proof (Theorem 2)

Proof. Note that Lemma 1 implies that the distribution of the number of
arrivals in interval [t, t+ s] is precisely the distribution of the number of inde-
pendent Exponential(λ) random variables it takes before their sum exceeds s.
This matches the definition of N(s) for a Poisson process with rate λ, so we

conclude N(t, t+ s)
d
= N(s).

A.1.3 Independent Increments Proof (Theorem 3)

Proof. Recall that our goal is to show that for 0 < t1 < · · · < tk, the set
of random variables N(t1), N(t1, t2), . . . , N(tk−1, tk) are jointly independent.
Let t = tk−1 for 1 ≤ i ≤ k and define Z,Z2, Z3, . . . as in the proof of the
stationary increments property above. Observe that the lemma shows that Z
is independent of N(t1), N(t1, t2), . . . , N(tk−2, t). In the previous proof, we
have seen that the subsequent interarrival times Z2, Z3, . . . are independent of
N(t1), N(t1, t2), . . . , N(tk−2, t) as well. It follows that N(t, tk) is independent
of N(t1), N(t1, t2), . . . , N(tk−2, t), as N(t, tk) is a function of Z,Z2, Z3, . . ..
Thus the last increment N(tk−1, tk) is independent of the previous ones.

Now, we can inductively claim that the entire set is independent. To see
this, we can consider the joint pmf:

P(N(t1) = n1, . . . , N(tk−1, tk) = nk)

= P(N(t1) = n1, . . . , N(tk−2, tk−1) = nk−1) · P(N(tk−1, tk) = nk)

= P(N(t1) = n1) · . . . · P(N(tk−1, tk) = nk)
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so the independent increments property holds.

A.1.4 pmf of N(t) (Theorem 4)

Proof. We can consider two ways to calculate P(t < Tn+1 < t + δ), the
probability the (n+ 1)th arrival arrives in [t, t+ δ].

One way is to integrate over the density of Tn+1, the Erlang(n + 1;λ)
distribution:

P(t < Tn+1 < t+ δ) =

∫ t+δ

t

fTn+1(τ)dτ = fTn+1(t)(δ + o(δ))

Another way of computing P(t < Tn+1 < t + δ) is by splitting up the
sample space by the number of arrivals in [t, t+ δ]:

P(t < Tn+1 < t+ δ)

= P(N(t) = n,N(t, t+ δ) = 1) +
n+1∑
k=2

P(N(t) = n+ 1− k,N(t, t+ δ) = k)

= P(N(t) = n)P(N(t, t+ δ) = 1) +
n+1∑
k=2

P(N(t) = n+ 1− k)P(N(t, t+ δ) = k)

The last equality holds due to the independent increments property.
Next, we calculate the individual terms that make up the expression.

Observe, using the Erlang density derived above, that

P(N(t, t+ δ) ≥ 1) = P(N(δ) ≥ 1)

= P(T1 ≤ δ)

=

∫ δ

0

λe−λt dt

= 1− e−λδ

= 1− (1− λδ + o(δ))

= λδ + o(δ)

P(N(t, t+ δ) ≥ 2) = P(N(δ) ≥ n)

= P(T2 ≤ δ)

=

∫ δ

0

λ2te−λt dt
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= 1− e−λδ(1− λδ)

= 1− (1− λδ + o(δ))(1 + λδ)

= o(δ)

Thus, the summation over k in our expression for P (t < Tn+1 < t+ δ) above
is o(δ) because each of the terms is upper bounded by P(T2 ≤ δ) = o(δ). On
the other hand, we have

P(N(t, t+ δ) = 1) = P(N(t, t+ δ) ≥ 1)− P(N(t, t+ δ) ≥ 2) = λδ + o(δ)

Thus it follows

P(t < Tn+1 < t+ δ) = P(N(t) = n)(λδ + o(δ)) + o(δ)

Equating these two methods of computing the probability gives

fTn+1(t)(δ + o(δ)) = P(N(t) = n)(λδ + o(δ)) + o(δ)

P(N(t) = n) =
1

λ
fTn+1(t) + o(δ)

Then, taking δ → 0 and plugging in our expression for fTn+1(t) gives P(N(t) =
n) = λntne−λt/n! as desired.

A.2 Proof of Merging (Theorem 6)

Before we begin the proof, we introduce a fact that you may recall from earlier
in the course: If X ∼ Poisson(λ) and Y ∼ Poisson(µ) are independent, then
X + Y ∼ Poisson(λ+ µ).

Proof. Exercise for the reader.

Proof of Poisson Merging. To establish independent increments, consider
some series of time instants 0 = t0 < t1 < . . . tk and consider the joint
pmf of arrivals between these snapshots:

P(L(t1) = n1, . . . , L(tk−1, tk) = nk)

=
∑

i1,...,ik

P (N(t1) = i1,M(t1) = n1 − i1, . . . , N(tk1 , tk) = ik,M(tk−1, tk) = nk − ik)

=
∑

i1,...,ik

P

(
k⋂

j=1

N(tj−1, tj) = ij

)
P

(
k⋂

j=1

M(tj−1, tj) = nj − ij

)
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=
∑

i1,...,ik

k∏
j=1

(P(N(tj−1, tj) = ij)P(M(tj−1, tj) = nj − ij))

=
k∏

j=1

∑
ij

(P(N(tj−1, tj) = ij)P(M(tj−1, tj) = nj − ij))

=
k∏

j=1

P(L(tj−1, tj) = nj)

The above derivation is a mess of indices, but the key idea is that we use
Law of Total Probability to consider the values of L in terms of the possible
values of N and M , and then we used the independence of the two processes
and the independent increments property of N and M to factor the joint pmf.
The interchange of the sum and product operators above is just using the
distributive property.

To show that the increments are stationary, we perform a similar calcula-
tion as above for s ≥ 0:

P(L(t, t+ s) = n) =
n∑

i=1

P(N(t, t+ s) = i)P(M(t, t+ s) = n− i)

=
n∑

i=1

P(N(s) = i)P(M(s) = n− i)

= P(L(s) = n)

where we again use Law of Total Probability and the stationary increments
property of N and M .

Finally, to show L(t) ∼ Poisson((λ+ µ)t), recall that N(t) ∼ Poisson(λt)
and M(t) ∼ Poisson(µt) the sum of independent Poisson random variables is
Poisson with the sum of the parameters.

A.3 Proof of Splitting (Theorem 7)

As with for Poisson merging, we recall another fact from earlier in the course:
Let X ∼ Poisson(λ) and B1, B2, . . . ∼iid Bernoulli(p) independent of X. Let
X0 = |{i : Bi = 0, i ≤ X}| and X1 = |{i : Bi = 1, i ≤ X}|. Then
X0 ∼ Poisson(λp), X1 ∼ Poisson(λ(1− p)), and X0 and X1 are independent
of each other.
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Proof. Exercise for the reader.

Proof of Poisson Splitting. As with for merging, to show that N0 and N1 are
Poisson processes, we need to show that the increments are independent
and stationary and that the number of arrivals in a given interval a Poisson
random variable. We will show that these properties hold for N0; a similar
set of steps could be used to show that N1 is a Poisson process.

To show that the increments are independent, consider some series of time
instants 0 = t0 < t1 < . . . < tk and write the joint pmf

P (N0(t1) ≤ n1, . . . , N0(tk−1, tk) ≤ nk)

=
∑

m1≥n1,...,mk≥nk

[
P

(
k⋂

j=1

N(tj−1, tj) ≤ nj

)
k∏

j=1

((
mj

nj

)
pnj(1− p)mj−nj

)]

=
∑

m1≥n1,...,mk≥nk

[
k∏

j=1

(
P (N(tj−1, tj) ≤ nj)

(
mj

nj

)
pnj(1− p)mj−nj

)]

=
k∏

j=1

 ∑
mj≥nj

(
P (N(tj−1, tj) ≤ nj)

(
mj

nj

)
pnj(1− p)mj−nj

)
=

k∏
j=1

P(N(tj−1, tj) = nj)

where, just as we did for the proof of Poisson merging, used Law of Total
Probability to write our expression in terms of the original process N(t)
and then use the independent increments property of N(t) to break up the
joint probabilities. The tricky step above was noting that because each
arrival is routed to N0 according to an independent Bernoulli trial, then the
distribution of N0(t1, t2) conditioned on N(t1, t2) = n is a binomial random
variable, independent of the of the other intervals.

Stationarity follows by a similar calculation:

P(N0(t, t+ s) = n) =
∑
m≥n

P(N(t, t+ s) = m)

(
m

n

)
pn(1− p)m−n

=
∑
m≥n

P(N(s) = m)

(
m

n

)
pn(1− p)m−n

= P(N0(s) = n)
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Finally, note that N(t) ∼ Poisson(λt) and observe that arrivals are in-
dependently being routed to N0(t) according to Bernoulli trials. Accord-
ing to the splitting property of Poisson random variables, it follows that
N0(t) ∼ Poisson(λpt). Thus we have shown that N0(t) is a Poisson process
with parameter λp; a similar argument shows that N1(t) is a Poisson process
with parameter λ(1− p).

However, we are not done with the proof – we have not yet established
that the two processes are independent of each other. Again, we consider some
series of time steps 0 = t0 < t1 < . . . < tk and we want to show that the sets
{N0(ti−1, ti) : 1 ≤ i ≤ k} and {N1(tj−1, tj) : 1 ≤ j ≤ k} are independent of
each other. Note that for i ̸= j, then independence holds because the arrivals
in N0(ti−1, ti) and N1(tj−1, tj) are independently chosen from N(ti−1, ti) and
N(tj−1, tj), which are themselves independent because of the independent
increments of N(t). Thus it suffices to check that independence holds for
i = j; however, this holds because we can apply the splitting property of
Poisson random variables to N(ti−1, ti).
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