EE 127A Final: Solutions

NAME:

SID:

The exam lasts 3 hours. The maximum number of points is 50 . Notes are not allowed except for a two-sided cheat sheet of regular format.

This booklet is 17 pages total, with extra blank spaces allotted throughout, and 2 blank pages at the end, left for you to write your answers.

There are 8 separate problems, ordered by topics consistent with the course outline. All the questions in this exam can be solved independently of each other.

1. (6 points, Topic: symmetric eigenvalues.) We consider a vector $u \in \mathbf{R}^{n}$, which is normalized $\left(\|u\|_{2}=1\right)$, and the associated symmetric matrix $P=I-u u^{T}$.
(a) (2 points) Show that P is positive semi-definite. Hint: use the Cauchy-Schwartz inequality.
(b) (2 points) Show that the eigenvalues of P are 1 and 0 .
(c) (2 points) Using the fact that, starting from a vector u, you can find (via QR for example) $n-1$ vectors u_{2}, \ldots, u_{n} such that $\left(u, u_{2}, \ldots, u_{n}\right)$ forms an orthonormal basis of \mathbf{R}^{n}, find an eigenvalue decomposition of P.

Solution:

(a) For every $x \in \mathbf{R}^{n}$, we have $x^{T} P x=x^{T} x-\left(x^{T} u\right)^{2}$. From the Cauchy-Schwartz inequality, we have

$$
\left|x^{T} u\right| \leq\|x\|_{2} \cdot\|u\|_{2}=\|x\|_{2},
$$

which implies $x^{T} P x \geq 0$.
(b) A non-zero vector x is an eigenvector corresponding to the eigenvalue λ if and only if

$$
\lambda x=P x=x-\left(x^{T} u\right) u .
$$

Thus the condition

$$
(1-\lambda) x=\left(x^{T} u\right) u, \quad x \neq 0
$$

fully characterizes eigenvalue/eigenvector pairs (x, λ).
The above equation has a solution for $\lambda=1$, in which case any non-zero x such that $x^{T} u=0$ solves it. Thus $\lambda=1$ is an eigenvalue. If $\lambda \neq 1$, then $x=\alpha u$, with $\alpha=\left(x^{T} u\right) /(1-\lambda)=\alpha /(1-\lambda)$. Thus, $\lambda=0$ is an eigenvalue, with eigenvector u.
(c) We use the QR decomposition to find $n-1$ vectors u_{2}, \ldots, u_{n} such that the collection u, u_{2}, \ldots, u_{n} forms an orthonormal basis of \mathbf{R}^{n}. Then from the expression of P, we obtain that $P u=0$, and $P u_{i}=u_{i}, i=2, \ldots, n$. Thus $U:=\left[u, u_{2}, \ldots, u_{n}\right]$ is an orthonormal matrix of eigenvectors of P, corresponding to the $n \times n$ diagonal matrix of eigenvalues $\Lambda=\operatorname{diag}(0,1, \ldots, 1)$. We can write the eigenvalue decomposition as

$$
P=U \Lambda U^{T}
$$

The above can be obtained directly from the fact that

$$
I=U U^{T}=u u^{T}+u_{2} u_{2}^{T}+\ldots+u_{n} u_{n}^{T},
$$

so that

$$
P=I-u u^{T}=u_{2} u_{2}^{T}+\ldots+u_{n} u_{n}^{T}=U \Lambda U^{T} .
$$

2. (8 points, Topic: projections.) We consider a collection of m news articles that are represented as m points $x_{i}, i=1, \ldots, m$ in \mathbf{R}^{n}, with a bag-of-words method. Here n is the total number of words in a given dictionary, and the j-th element in x_{i} contains the number of times word j appears in article i. We are given two additional articles, called the origin and destination articles, represented by two vectors x_{0} and x_{d} in \mathbf{R}^{n}. We would like to find a small number $k \ll m$ of articles that are in some way connecting the origin and destination articles (think of trying to find a sequence of articles that connect the beginning and the end of the coverage of a certain topic). To this end, we will find the k points that are closest to the line \mathcal{L} (not the segment) passing through x_{0} and x_{d}.
(a) (2 points) Show that to simplify, and without loss of generality, we can reduce the problem to the case when $x_{0}=0$ and x_{d} is normalized $\left(\left\|x_{d}\right\|_{2}=1\right)$.
(b) (2 points) For a given point $x \in \mathbf{R}^{n}$, find the point on the line \mathcal{L} that is closest, in Euclidean norm, to x.
(c) (2 points) Show that the distance D from x to its projection on the line satisfies $D^{2}=x^{T} P x$, where $P=I-x_{d} x_{d}^{T}$.
(d) (2 points) Explain how you can find a set of k articles that connect x_{0} and x_{d}, in the sense defined above.

Solution:

(a) We first replace x_{i}, x_{d} with $x_{i}-x_{0}$ and $x_{d}-x_{0}$ respectively. This allows to replace x_{0} with 0 . Then we can normalize all the vectors involved, dividing them by x_{d}. Note that the two operations involved (translation and scaling) do not change the geometry of the problem.
(b) We must solve the projection problem

$$
D^{2}:=\min _{t}\left\|t x_{d}-x\right\|_{2}^{2}
$$

Using the fact that x_{d} is normalized, we have

$$
\left\|t x_{d}-x\right\|_{2}^{2}=t^{2}-2 t\left(x^{T} x_{d}\right)+x^{T} x=\left(t-x^{T} x_{d}\right)^{2}+x^{T} x-\left(x^{T} x_{d}\right)^{2} .
$$

The minimum is attained with $t^{*}=x^{T} x_{d}$, so that the projection of x on the line passing through 0 and x_{d} is $\left(x^{T} x_{d}\right) x_{d}$.
(c) The optimal value of the problem is

$$
D^{2}=x^{T} x-\left(x^{T} x_{d}\right)^{2}=x^{T} P x
$$

where $P=I-x_{d} x_{d}^{T}$, as claimed.
(d) To connect x_{0} and x_{d}, we simply compute the quantities

$$
D_{i}^{2}:=x_{i}^{T} P x_{i}, \quad i=1, \ldots, m
$$

and select the k smallest.
3. (6 points, Topic: SVD.) An exam with m questions is given to n students. The instructor collects all the grades in a $n \times m$ matrix G, with $G_{i j}$ the grade obtained by student i on question j. We would like to assign a difficulty score to each question, based on the available data.
(a) (2 points) Assume that the grade matrix G is well approximated by a rank-one matrix $s q^{T}$, with $s \in \mathbf{R}^{n}$ and $q \in \mathbf{R}^{m}$. (You may assume that both s, q have non-negative components.) Explain how to use the approximation to assign a difficulty score to each question.
(b) (2 points) What is the interpretation of vector s ?
(c) (2 points) How would you compute a rank-one approximation to G ? State precisely your answer in terms of the SVD of G.

Solution:

(a) Assume that $G=s q^{T}$, with $s \in \mathbf{R}^{n}$ and $q \in \mathbf{R}^{m}$. This means that the grade of the i-th student on question j is $s_{i} q_{j}$. Hence all the students score according to the same profile $q=\left(q_{1}, \ldots, q_{m}\right)$, up to a student-dependent scaling given by s. The vector q can be interpreted as the difficulty score of each question.
(b) The vector s gives the relative strengths of the students: a student having a high value of s scores better than one with a low value.
(c) To approximate G by a rank-one vector, we simply compute the SVD of G and select the singular vectors corresponding to the largest singular value. Precisely, we set $s=\sqrt{\sigma_{1}} u_{1}, q=\sqrt{\sigma_{1}} v_{1}$, where u_{1}, v_{1} are the first columns of the matrices U, V in the SVD of $G=U \Sigma V^{T}$, and σ_{1} is the largest singular value, appearing in the $(1,1)$ position of the diagonal matrix of singular values Σ. (Note that the overall scale factor $\sqrt{\sigma_{1}}$ is irrelevant, as we are only interested in relative values of s, q.)
4. (6 points, Topic: convexity.) In this problem we examine the convexity of various functions of a n-vector x.
(a) (3 points) For a given $k \in\{1, \ldots, n\}$ we define the function $s_{k}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ with values given by

$$
s_{k}(x)=\sum_{i=1}^{k} x_{[i]},
$$

where $x_{[i]}$ is the i-th largest component of x. Show that s_{k} is convex. Hint: express s_{k} as the maximum of linear functions. You can try with $n=3, k=2$ first.
(b) (3 points) Assume $n=2 k-1$ is odd. Consider the average absolute deviation from the median of the components of x, which is the function $\phi: \mathbf{R}^{n} \rightarrow \mathbf{R}$ with values given by

$$
\phi(x)=\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-\operatorname{med}(x)\right|,
$$

where $\operatorname{med}(x)=x_{[k]}$ denotes the median of the components of x. Show that ϕ is convex. Hint: express ϕ in terms of s_{k}, s_{k-1} and the sum of the components of x.

Solution:

(a) For $n=3, k=2$, we have

$$
s_{2}(x)=\max \left(x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+x_{1}\right) .
$$

More generally:

$$
s_{k}(x)=\max _{\left(i_{1}, \ldots, i_{k}\right) \in\{1, \ldots, n\}^{k}} x_{i_{1}}+\ldots+x_{i_{k}}
$$

This shows that s_{k} is the point-wise maximum of linear function, hence it is convex.
(b) We have, for $n=2 k-1$ odd:

$$
\phi(x)=\sum_{i=1}^{k-1}\left(x_{[i]}-x_{[k]}\right)+\sum_{i=k+1}^{n}\left(x_{[k]}-x_{[i]}\right)=\sum_{i=1}^{k-1} x_{[i]}-\sum_{i=k+1}^{n} x_{[i]}=s_{k-1}(x)+s_{k}(x)-\sum_{i=1}^{n} x_{i},
$$

which shows that ϕ is convex.
5. (6 points, Topic: sphere packing.) We consider the problem of packing a given number m of spheres in a box of minimal area. The spheres have a given radius r_{i}, and the problem is to determine the location of the centers $x_{i}, i=1, \ldots, m$. The constraints in this problem are that the spheres should not overlap, and should be contained in a square of center 0 and half-size R. The objective is to minimize the area of the containing box.
(a) (2 points) Show that two spheres of radius r_{1}, r_{2} and centers x_{1}, x_{2} respectively do not intersect if and only if $\left\|x_{1}-x_{2}\right\|_{2}$ exceeds a certain number, which you will determine.
(b) (2 points) Formulate the sphere packing problem as an optimization problem in variables x_{1}, \ldots, x_{m}, and R.
(c) (2 points) Is the formulation you have found convex? If not, state precisely why. Otherwise, state which acronym seen in the course (LP, QP, SOCP, SDP) applies, if possible.

Solution:

(a) The non-overlap condition is

$$
\left\|x_{1}-x_{2}\right\|_{2} \geq r_{1}+r_{2}
$$

(b) A sphere of center x and radius r is contained in the box of center 0 and half-size R if and only if the center is inside the box of center 0 and half-size $R-r$, that is: $\|x\|_{\infty} \leq R-r$.
Hence the sphere packing problem writes

$$
\begin{aligned}
\min _{R, x_{1}, \ldots, x_{m}} R: & \left\|x_{i}-x_{i}\right\|_{2} \geq r_{i}+r_{j}, \quad 1 \leq i, j \leq m \\
& \left\|x_{i}\right\|_{\infty}+r_{i} \leq R, l i=1, \ldots, m
\end{aligned}
$$

(c) The problem, as formulated above, is not convex, since the non-overlap constraints involve bounding norms from below.
6. (8 points, Topic: LP.) When a user goes to a website, one of a set of n ads, labeled $1, \ldots, n$, is displayed. This is called an impression. We divide some time interval (say, one day) into T periods, labeled $t=1, \ldots, T$. Let $N_{i t} \geq 0$ denote the number of impressions in period t for which we display ad i. In period t there will be a total of $I_{t}>0$ impressions, so we must have $\sum_{i=1}^{n} N_{i t}=I_{t}$, for $t=1, \ldots, T$. (The numbers I_{t} might be known from past history.) You can treat all these integer numbers as real. (This is justified since they are typically very large.)
The revenue for displaying ad i in period t is $R_{i t} \geq 0$ per impression. (This might come from click-through payments, for example.) The total revenue is $\sum_{t=1}^{T} \sum_{i=1}^{n} R_{i t} N_{i t}$. To maximize revenue, we would simply display the ad with the highest revenue per impression, and no other, in each display period.
We also have in place a set of m contracts that require us to display certain numbers of ads, or mixes of ads (say, associated with the products of one company), over certain periods, with a penalty for any shortfalls. Contract j is characterized by a set of ads $\mathcal{A}_{j} \subseteq\{1, \ldots, n\}$ (while it does not affect the math, these are often disjoint), a set of periods $\mathcal{T}_{j} \subseteq\{1, \ldots, T\}$, a target number of impressions $q_{j} \geq 0$, and a shortfall penalty rate $p_{j}>0$. The shortfall s_{j} for contract j is

$$
s_{j}=\max \left(0, q_{j}-\sum_{t \in \mathcal{T}_{j}} \sum_{i \in \mathcal{A}_{j}} N_{i t}\right)
$$

(This is the number of impressions by which we fall short of the target value q_{j}.) Our contracts require a total penalty payment equal to $\sum_{j=1}^{m} p_{j} s_{j}$. Our net profit is the total revenue minus the total penalty payment.
Explain how to find the display numbers $N_{i t}$ that maximize net profit via linear programming. The data in this problem are $R \in \mathbf{R}^{n \times T}, I \in \mathbf{R}^{T}$ (here I is the vector of impressions, not the identity matrix), and the contract data $\mathcal{A}_{j}, \mathcal{T}_{j}, q_{j}$ and p_{j}, $j=1, \ldots, m$. Make sure to state precisely what the variables and constraints are.
Solution: The problem reads as an LP with variables the matrix $N \in \mathbf{R}^{n \times T}$ and vector $s \in \mathbf{R}^{m}$:

$$
\begin{array}{ll}
\max _{N, s} & \sum_{t=1}^{T} \sum_{I=1}^{n} R_{i t} N_{i t}-\sum_{j=1}^{m} p_{j} s_{j} \\
\text { s.t. } & s_{j} \geq q_{j}-\sum_{t \in \mathcal{T}_{j}} \sum_{i \in \mathcal{A}_{j}} N_{i t}, \quad j=1, \ldots, m \\
& \sum_{i=1}^{n} N_{i t}=I_{t}, \quad t=1, \ldots, T \\
& N \geq 0, \quad s \geq 0
\end{array}
$$

where the last two inequalities are component-wise.
7. (10 points, Topic: QP.) We are given a fixed number of shares \bar{s} of a single asset, to be purchased over time intervals $t=1, \ldots, T$. We denote by s_{t} the amount of shares to be purchased at time t, and refer to the vector $s=\left(s_{1}, \ldots, s_{T}\right) \in \mathbf{R}^{T}$ as our sequence of trades, so that $s^{T} \mathbf{1}=\bar{s}$, where $\mathbf{1} \in \mathbf{R}^{T}$ is a vector of ones. We treat s as a real vector (not an integer vector), and do not allow short selling, that is, we impose the constraint $s \geq 0$. We denote by p_{t} the price of the asset at time t, and refer to $p=\left(p_{1}, \ldots, p_{T}\right)$ as the price vector. The execution cost associated with a given sequence of trades $s \in \mathbf{R}_{+}^{T}$ is then $\sum_{t=1}^{T} p_{t} s_{t}$.
As we purchase s_{t} shares at each time $t, t=1, \ldots, T$, the price p_{t} changes, not only due to (random) market dynamics, but also due to our purchases. A simple model for market impact dynamics is

$$
\begin{equation*}
p_{t}=p_{t-1}+\alpha s_{t}+r_{t}, \quad t=0, \ldots, T, \tag{1}
\end{equation*}
$$

where $p_{0}, \alpha>0$ are model parameters, which we assume known. Here, the exogenous signal $r=\left(r_{1}, \ldots, r_{T}\right)$, which we also assume to be known for now, reflects the influence of the market as a whole on the price; for example, it may be derived from a simple (e.g., auto-regressive) model for the SP 500 index. The market impact model above is simplistic as it does not guarantee positive prices, but we ignore that fact here.
Our goal is to find the best sequence of trades s so as to minimize the execution cost, subject to the constraints on s.
(a) (2 points) Show that we can write $p=A(\alpha s+r)+q$, where A a lower-triangular $T \times T$ matrix with 1's on the lower-triangular part, and $q \in \mathbf{R}^{T}$ is given.
(b) (4 points) Write the problem with decision variables s, p, and including the constraint (1). In that form, is the problem convex? Justify your answer carefully.
(c) (4 points) Write the problem as a QP in standard form. State precisely the variables and constraints. Make sure to check that the objective function is quadratic and convex in the variables of the problem. Hint: show that $q(s):=s^{T} A s=s^{T} Q s$, with $Q:=(1 / 2) s^{T}\left(A+A^{T}\right) s$, and that $2 Q-I$ is PSD, with I the $T \times T$ identity matrix.

Solution:

(a) We have

$$
p=A(\alpha s+r)+q
$$

where

$$
A=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
1 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 1
\end{array}\right), q=\left(\begin{array}{c}
p_{0} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

(b) The problem writes

$$
\begin{equation*}
\min _{s, p} p^{T} s: s \geq 0, \quad s^{T} \mathbf{1}=\bar{s}, \quad p=A(\alpha s+r)+q \tag{2}
\end{equation*}
$$

As such it is not a QP. To check this, we observe that the objective function, $f:(p, s) \rightarrow p^{T} s$, is quadratic, and contains no linear of constant terms (it is a "quadratic form"). Quadratic forms are convex if and only if they are non-negative everywhere. This is not true, as the special case $p=-s$ reveals.
(c) Problem (2) is not convex. However, after we eliminate p, the problem becomes convex.
Indeed, the execution costs are

$$
s^{T} p=s^{T}(A(\alpha s+r)+q)=\alpha s^{T} A s+s^{T}(A r+q)
$$

Since $\alpha>0$ it suffices to show that the quadratic function $q: \mathbf{R}^{m} \rightarrow \mathbf{R}$ with values $q(s):=s^{T} A s$ is convex. We use the hint:

$$
q(s)=s^{T} A s=\frac{1}{2}\left(s^{T} A s+s^{T} A^{T} s\right)=s^{T} Q s
$$

With $Q:=(1 / 2)\left(A+A^{T}\right)$. It is readily verified that the diagonal elements of $2 Q$ are all 2's and off-diagonal elements are all 1's:

$$
2 Q=A+A^{T}=\left(\begin{array}{cccc}
2 & 1 & \ldots & 1 \\
1 & 2 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 2
\end{array}\right)=I+\mathbf{1 1}^{T}
$$

Hence the form q is positive semi-definite:

$$
\text { For every } s: q(s)=s^{T} Q s=\frac{1}{2}\left(s^{T} s+\left(\mathbf{1}^{T} s\right)^{2}\right) \geq 0
$$

Hence the matrix Q is positive semi-definite (PSD), and the associated quadratic function q is convex.
To summarize, our problem writes

$$
\min _{s} \alpha s^{T} Q s+s^{T}(A r+q): s \geq 0, \quad s^{T} \mathbf{1}=\bar{s}
$$

This is a QP (since $\alpha>0, Q$ PSD $)$.

