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EE 127A Final: Solutions

NAME: SID:

The exam lasts 3 hours. The maximum number of points is 50. Notes are not allowed except
for a two-sided cheat sheet of regular format.

This booklet is 17 pages total, with extra blank spaces allotted throughout, and 2 blank
pages at the end, left for you to write your answers.

There are 8 separate problems, ordered by topics consistent with the course outline. All the
questions in this exam can be solved independently of each other.
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1. (6 points, Topic: symmetric eigenvalues.) We consider a vector u ∈ Rn, which is
normalized (‖u‖2 = 1), and the associated symmetric matrix P = I − uuT .

(a) (2 points) Show that P is positive semi-definite. Hint: use the Cauchy-Schwartz
inequality.

(b) (2 points) Show that the eigenvalues of P are 1 and 0.

(c) (2 points) Using the fact that, starting from a vector u, you can find (via QR for
example) n− 1 vectors u2, . . . , un such that (u, u2, . . . , un) forms an orthonormal
basis of Rn, find an eigenvalue decomposition of P .

Solution:

(a) For every x ∈ Rn, we have xTPx = xTx − (xTu)2. From the Cauchy-Schwartz
inequality, we have

|xTu| ≤ ‖x‖2 · ‖u‖2 = ‖x‖2,
which implies xTPx ≥ 0.

(b) A non-zero vector x is an eigenvector corresponding to the eigenvalue λ if and
only if

λx = Px = x− (xTu)u.

Thus the condition
(1− λ)x = (xTu)u, x 6= 0

fully characterizes eigenvalue/eigenvector pairs (x, λ).

The above equation has a solution for λ = 1, in which case any non-zero x such
that xTu = 0 solves it. Thus λ = 1 is an eigenvalue. If λ 6= 1, then x = αu, with
α = (xTu)/(1−λ) = α/(1−λ). Thus, λ = 0 is an eigenvalue, with eigenvector u.

(c) We use the QR decomposition to find n−1 vectors u2, . . . , un such that the collec-
tion u, u2, . . . , un forms an orthonormal basis of Rn. Then from the expression of
P , we obtain that Pu = 0, and Pui = ui, i = 2, . . . , n. Thus U := [u, u2, . . . , un]
is an orthonormal matrix of eigenvectors of P , corresponding to the n × n di-
agonal matrix of eigenvalues Λ = diag(0, 1, . . . , 1). We can write the eigenvalue
decomposition as

P = UΛUT .

The above can be obtained directly from the fact that

I = UUT = uuT + u2u
T
2 + . . .+ unu

T
n ,

so that
P = I − uuT = u2u

T
2 + . . .+ unu

T
n = UΛUT .
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2. (8 points, Topic: projections.) We consider a collection of m news articles that are
represented as m points xi, i = 1, . . . ,m in Rn, with a bag-of-words method. Here n is
the total number of words in a given dictionary, and the j-th element in xi contains the
number of times word j appears in article i. We are given two additional articles, called
the origin and destination articles, represented by two vectors x0 and xd in Rn. We
would like to find a small number k << m of articles that are in some way connecting
the origin and destination articles (think of trying to find a sequence of articles that
connect the beginning and the end of the coverage of a certain topic). To this end, we
will find the k points that are closest to the line L (not the segment) passing through
x0 and xd.

(a) (2 points) Show that to simplify, and without loss of generality, we can reduce the
problem to the case when x0 = 0 and xd is normalized (‖xd‖2 = 1).

(b) (2 points) For a given point x ∈ Rn, find the point on the line L that is closest,
in Euclidean norm, to x.

(c) (2 points) Show that the distance D from x to its projection on the line satisfies
D2 = xTPx, where P = I − xdx

T
d .

(d) (2 points) Explain how you can find a set of k articles that connect x0 and xd, in
the sense defined above.

Solution:

(a) We first replace xi, xd with xi−x0 and xd−x0 respectively. This allows to replace
x0 with 0. Then we can normalize all the vectors involved, dividing them by xd.
Note that the two operations involved (translation and scaling) do not change the
geometry of the problem.

(b) We must solve the projection problem

D2 := min
t

‖txd − x‖22.

Using the fact that xd is normalized, we have

‖txd − x‖22 = t2 − 2t(xTxd) + xTx = (t− xTxd)
2 + xTx− (xTxd)

2.

The minimum is attained with t∗ = xTxd, so that the projection of x on the line
passing through 0 and xd is (xTxd)xd.

(c) The optimal value of the problem is

D2 = xTx− (xTxd)
2 = xTPx,

where P = I − xdx
T
d , as claimed.

(d) To connect x0 and xd, we simply compute the quantities

D2
i := xT

i Pxi, i = 1, . . . ,m,

and select the k smallest.
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3. (6 points, Topic: SVD.) An exam with m questions is given to n students. The
instructor collects all the grades in a n×m matrix G, with Gij the grade obtained by
student i on question j. We would like to assign a difficulty score to each question,
based on the available data.

(a) (2 points) Assume that the grade matrix G is well approximated by a rank-one
matrix sqT , with s ∈ Rn and q ∈ Rm. (You may assume that both s, q have
non-negative components.) Explain how to use the approximation to assign a
difficulty score to each question.

(b) (2 points) What is the interpretation of vector s?

(c) (2 points) How would you compute a rank-one approximation to G? State pre-
cisely your answer in terms of the SVD of G.

Solution:

(a) Assume that G = sqT , with s ∈ Rn and q ∈ Rm. This means that the grade of
the i-th student on question j is siqj. Hence all the students score according to
the same profile q = (q1, . . . , qm), up to a student-dependent scaling given by s.
The vector q can be interpreted as the difficulty score of each question.

(b) The vector s gives the relative strengths of the students: a student having a high
value of s scores better than one with a low value.

(c) To approximate G by a rank-one vector, we simply compute the SVD of G and
select the singular vectors corresponding to the largest singular value. Precisely,
we set s =

√
σ1u1, q =

√
σ1v1, where u1, v1 are the first columns of the matrices

U, V in the SVD of G = UΣV T , and σ1 is the largest singular value, appearing
in the (1, 1) position of the diagonal matrix of singular values Σ. (Note that the
overall scale factor

√
σ1 is irrelevant, as we are only interested in relative values

of s, q.)
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4. (6 points, Topic: convexity.) In this problem we examine the convexity of various
functions of a n-vector x.

(a) (3 points) For a given k ∈ {1, . . . , n} we define the function sk : Rn → R with
values given by

sk(x) =
k

∑

i=1

x[i],

where x[i] is the i-th largest component of x. Show that sk is convex. Hint:

express sk as the maximum of linear functions. You can try with n = 3, k = 2
first.

(b) (3 points) Assume n = 2k − 1 is odd. Consider the average absolute deviation
from the median of the components of x, which is the function φ : Rn → R with
values given by

φ(x) =
1

n

n
∑

i=1

|xi −med(x)|,

where med(x) = x[k] denotes the median of the components of x. Show that φ is
convex. Hint: express φ in terms of sk, sk−1 and the sum of the components of x.

Solution:

(a) For n = 3, k = 2, we have

s2(x) = max(x1 + x2, x2 + x3, x3 + x1).

More generally:
sk(x) = max

(i1,...,ik)∈{1,...,n}k
xi1 + . . .+ xik .

This shows that sk is the point-wise maximum of linear function, hence it is
convex.

(b) We have, for n = 2k − 1 odd:

φ(x) =
k−1
∑

i=1

(x[i]−x[k])+
n

∑

i=k+1

(x[k]−x[i]) =
k−1
∑

i=1

x[i]−
n

∑

i=k+1

x[i] = sk−1(x)+sk(x)−
n

∑

i=1

xi,

which shows that φ is convex.
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5. (6 points, Topic: sphere packing.) We consider the problem of packing a given number
m of spheres in a box of minimal area. The spheres have a given radius ri, and the
problem is to determine the location of the centers xi, i = 1, . . . ,m. The constraints
in this problem are that the spheres should not overlap, and should be contained in
a square of center 0 and half-size R. The objective is to minimize the area of the
containing box.

(a) (2 points) Show that two spheres of radius r1, r2 and centers x1, x2 respectively
do not intersect if and only if ‖x1−x2‖2 exceeds a certain number, which you will
determine.

(b) (2 points) Formulate the sphere packing problem as an optimization problem in
variables x1, . . . , xm, and R.

(c) (2 points) Is the formulation you have found convex? If not, state precisely why.
Otherwise, state which acronym seen in the course (LP, QP, SOCP, SDP) applies,
if possible.

Solution:

(a) The non-overlap condition is

‖x1 − x2‖2 ≥ r1 + r2.

(b) A sphere of center x and radius r is contained in the box of center 0 and half-size
R if and only if the center is inside the box of center 0 and half-size R − r, that
is: ‖x‖∞ ≤ R− r.

Hence the sphere packing problem writes

min
R,x1,...,xm

R : ‖xi − xi‖2 ≥ ri + rj, 1 ≤ i, j ≤ m,
‖xi‖∞ + ri ≤ R, li = 1, . . . ,m.

(c) The problem, as formulated above, is not convex, since the non-overlap constraints
involve bounding norms from below.
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6. (8 points, Topic: LP.) When a user goes to a website, one of a set of n ads, labeled
1, . . . , n, is displayed. This is called an impression. We divide some time interval (say,
one day) into T periods, labeled t = 1, . . . , T . Let Nit ≥ 0 denote the number of
impressions in period t for which we display ad i. In period t there will be a total of
It > 0 impressions, so we must have

∑n

i=1 Nit = It, for t = 1, . . . , T . (The numbers It
might be known from past history.) You can treat all these integer numbers as real.
(This is justified since they are typically very large.)

The revenue for displaying ad i in period t is Rit ≥ 0 per impression. (This might come
from click-through payments, for example.) The total revenue is

∑T

t=1

∑n

i=1 RitNit.
To maximize revenue, we would simply display the ad with the highest revenue per
impression, and no other, in each display period.

We also have in place a set of m contracts that require us to display certain numbers of
ads, or mixes of ads (say, associated with the products of one company), over certain
periods, with a penalty for any shortfalls. Contract j is characterized by a set of ads
Aj ⊆ {1, . . . , n} (while it does not affect the math, these are often disjoint), a set of
periods Tj ⊆ {1, . . . , T}, a target number of impressions qj ≥ 0, and a shortfall penalty
rate pj > 0. The shortfall sj for contract j is

sj = max



0, qj −
∑

t∈Tj

∑

i∈Aj

Nit



 .

(This is the number of impressions by which we fall short of the target value qj.) Our
contracts require a total penalty payment equal to

∑m

j=1 pjsj. Our net profit is the
total revenue minus the total penalty payment.

Explain how to find the display numbers Nit that maximize net profit via linear pro-
gramming. The data in this problem are R ∈ Rn×T , I ∈ RT (here I is the vector
of impressions, not the identity matrix), and the contract data Aj, Tj, qj and pj,
j = 1, . . . ,m. Make sure to state precisely what the variables and constraints are.

Solution: The problem reads as an LP with variables the matrix N ∈ Rn×T and
vector s ∈ Rm:

max
N,s

T
∑

t=1

n
∑

I=1

RitNit −
m
∑

j=1

pjsj

s.t. sj ≥ qj −
∑

t∈Tj

∑

i∈Aj

Nit, j = 1, . . . ,m,

n
∑

i=1

Nit = It, t = 1, . . . , T,

N ≥ 0, s ≥ 0,

where the last two inequalities are component-wise.
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7. (10 points, Topic: QP.) We are given a fixed number of shares s̄ of a single asset, to be
purchased over time intervals t = 1, . . . , T . We denote by st the amount of shares to be
purchased at time t, and refer to the vector s = (s1, . . . , sT ) ∈ RT as our sequence of
trades, so that sT1 = s̄, where 1 ∈ RT is a vector of ones. We treat s as a real vector
(not an integer vector), and do not allow short selling, that is, we impose the constraint
s ≥ 0. We denote by pt the price of the asset at time t, and refer to p = (p1, . . . , pT ) as
the price vector. The execution cost associated with a given sequence of trades s ∈ RT

+

is then
∑T

t=1 ptst.

As we purchase st shares at each time t, t = 1, . . . , T , the price pt changes, not only
due to (random) market dynamics, but also due to our purchases. A simple model for
market impact dynamics is

pt = pt−1 + αst + rt, t = 0, . . . , T, (1)

where p0, α > 0 are model parameters, which we assume known. Here, the exogenous
signal r = (r1, . . . , rT ), which we also assume to be known for now, reflects the influence
of the market as a whole on the price; for example, it may be derived from a simple
(e.g., auto-regressive) model for the SP 500 index. The market impact model above is
simplistic as it does not guarantee positive prices, but we ignore that fact here.

Our goal is to find the best sequence of trades s so as to minimize the execution cost,
subject to the constraints on s.

(a) (2 points) Show that we can write p = A(αs+ r) + q, where A a lower-triangular
T × T matrix with 1’s on the lower-triangular part, and q ∈ RT is given.

(b) (4 points) Write the problem with decision variables s, p, and including the con-
straint (1). In that form, is the problem convex? Justify your answer carefully.

(c) (4 points) Write the problem as a QP in standard form. State precisely the vari-
ables and constraints. Make sure to check that the objective function is quadratic
and convex in the variables of the problem. Hint: show that q(s) := sTAs = sTQs,
with Q := (1/2)sT (A+AT )s, and that 2Q− I is PSD, with I the T × T identity
matrix.

Solution:

(a) We have
p = A(αs+ r) + q,

where

A =











1 0 . . . 0
1 1 . . . 0
...

...
. . .

...
1 1 . . . 1











, q =











p0
0
...
0











.
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(b) The problem writes

min
s,p

pT s : s ≥ 0, sT1 = s̄, p = A(αs+ r) + q. (2)

As such it is not a QP. To check this, we observe that the objective function,
f : (p, s) → pT s, is quadratic, and contains no linear of constant terms (it is a
“quadratic form”). Quadratic forms are convex if and only if they are non-negative
everywhere. This is not true, as the special case p = −s reveals.

(c) Problem (2) is not convex. However, after we eliminate p, the problem becomes
convex.

Indeed, the execution costs are

sTp = sT (A(αs+ r) + q) = αsTAs+ sT (Ar + q).

Since α > 0 it suffices to show that the quadratic function q : Rm → R with
values q(s) := sTAs is convex. We use the hint:

q(s) = sTAs =
1

2
(sTAs+ sTAT s) = sTQs,

With Q := (1/2)(A+AT ). It is readily verified that the diagonal elements of 2Q
are all 2’s and off-diagonal elements are all 1’s:

2Q = A+ AT =











2 1 . . . 1
1 2 . . . 1
...

...
. . .

...
1 1 . . . 2











= I + 11T .

Hence the form q is positive semi-definite:

For every s: q(s) = sTQs =
1

2
(sT s+ (1T s)2) ≥ 0.

Hence the matrix Q is positive semi-definite (PSD), and the associated quadratic
function q is convex.

To summarize, our problem writes

min
s

αsTQs+ sT (Ar + q) : s ≥ 0, sT1 = s̄.

This is a QP (since α > 0, Q PSD).
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