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Midterm Solutions

1. (4 points) Consider the set in R?, defined by the equation
P = {x€R3 : x1—|—2x2—|—3x3:1}.

(a) Show that the set P is an affine subspace of dimension 2. To this end, express it
as 2% + span(z!, 2?), where 2° € P, and z!, z? are independent vectors.

(b) Find the minimum FEuclidean distance from 0 to the set P. Find a point that
achieves the minimum distance. (Hint: either apply a formula if you know it, or
prove that the minimum-distance point is proportional to the vector a := (1,2, 3).)

Solutions:

(a) The affine subspace P is of dimension 2 in R?, it is a (hyper-) plane. To show
this, we solve the equation for one of the variables, say x;:

I = 1—21’2—3I3.

This shows that any vector x € P can be expressed as

1-— 21’2 - 3[)’23 1 —2 -3
Tr = T = 0 | +x9 1 + x3 0 ,

with x5, 23 free parameters. Thus, P = z° + span(z!, 2?), with

1 —2 -3
=101, 2t = 1 , 1’ = 0
0 0 1

We check that the two vectors x!, 22 are indeed independent, since Az! + pux? = 0
implies A = p = 0.
(b) The minimum distance to the affine set {x : Ax = b}, with b € R™, and

A € R"™™ full row rank (that is, AAT is positive-definite), is given by the formula
ot = AT(AAT)"1b. Applying this formula to A = a”, b = 1, yields

—_



The minimum distance is ||z*|, = 1/vVaTa = 1/v/14.

Alternatively, we notice that any vector z € R? can be decomposed as = = ta+ z,
with t € R, and z € R?, with 27a = 0. The condition z € P then implies
t =1/a’a. Since ||z|% = t?aTa + 272 = (1/a”a) + 272, the objective function of
the minimum Fuclidean distance problem

1
min ||z = min 4/ — + 272 : a’z=0
z€P z a”a

is minimal when z = 0. This shows that z* = a/(a’a), as claimed.

2. (8 points) Consider the operation of finding the point symmetric to a given point about
a given line £ in R".

Figure 1: A point and its symmetric about the line L.

We define the line as £ := {zg + tu,t € R}, where ¢ is a point on the line, and wu its
direction, which we assume is normalized: |lulls = 1. For a given point z € R", We
denote by f(xz) € R" the point that is symmetric to z about the line. (See Fig 1.)
That is, f(x) = 2p(x) — = where p(z) is the projection of x on the line:

p(r) = arg min P — |2

Show that the mapping f is affine. Describe it in terms of a n x n matrix A and a
n x 1 vector b, such that f(z) = Az + b for every z. (It will be useful to use the
notation P := uu’.)

What is the geometric interpretation of the vector b7
Show that the mapping f is linear if and only if the line passes through 0.

Show that f(f(z)) = x for every x. What is the geometric meaning of this
property?



(e) What is the range and nullspace of the matrix A7 What is the rank of A? Is A
invertible?

(f) Show that A is symmetric, find its eigenvalue decomposition (EVD). Hint: define
Us, . .., Uy, to be an orthonormal basis for the subspace orthogonal to u, and show
that the orthogonal matrix U := [u, us, ..., u,| contains eigenvectors of A.

(g) Find an SVD decomposition of A. What is the relationship between the EVD of
A with its SVD?

(h) Assume that the input is bounded: ||z|| < 1. Find a bound on the Euclidean
norm of the output f(x). Find an input x that achieves the bound.

Solutions:

(a) The minimum of the function with values

h(t) = |tu+zo — 2|2 = * = 2tu’ (2 — x0) + ||z — 0]|3
= (t—u"(z — x0))* + constant
is obtained with #(z) := u’ (z — z¢). Thus, we have

p(x) = t(x)u+ 20 = (u" (z — 20))u + 19 = P(x — 30) + 70, P :=uu’.

Hence
flx)=2p(x) —xz= 2P —I)(x —x0) + 1o = Az + b,
where A =2P — 1, b=2(I — P)x,.
(b) Since f(0) = b, the latter is simply the symmetric to the origin about the line.

(c) The mapping is linear if only if b = 0, that is, when =z, satisfies Pxy = xy. Hence,
zo = uu’zy = (u'xy)u is proportional to u. In that case, the line goes through 0,

since 0 = xg + tu, with ¢t = —(u”x).
(d) We have Pu = u. Further, P? = (vu”)(uu”) = (u"v)uu® = uwu™ = P. The latter
implies

A= (2P —1)(2P —I)=4P? —4P + 1 =1.
In addition, Pb = 2P(I — P)xy = 0. We obtain Ab = (2P — I)b = —b. We thus
obtain that
f(f(x)=AAz +b) +b=A%c+ Ab+b=x—b+b=ux.

The geometry of this is simply that the symmetric to the symmetric is itself.

(e) The nullspace of A is the set of vectors with Az = 0, meaning 2Pz = z. Thus,
x = 2(uTx)u is proportional to u. Since Ax = 0, but Au = u # 0, we must have
uz = 0, hence z = 2(u"z)u = 0. We conclude that the nullspace is {0}, the
range is R", and A is full rank, hence invertible since it is also square.



(f) Since A = 2uu™ — I, it is symmetric.

Let us, ..., u, be an orthonormal basis for the subspace orthogonal to u; we have
ufu=0,i=2,...,n. We have Au = u, Au; = —u;, i = 2,...,n. Hence the vec-
tor u is an eigenvector associated with the eigenvalue 1, and the w;, 1 = 2,...,n,
are eigenvectors all associated with the eigenvalue —1. Writing the previous con-
ditions compactly as AU = UA, with U = [u,us, ..., u,| an orthogonal matrix,
A = diag(1,—1,...,—1), we obtain that A admits the symmetric eigenvalue de-

composition A = UAUT.

(g) We have Pu; = (vuj)u = 0, i = 2,...,n. With U = [u,u,...,u,], we get
PU = [Pu, Pus, ..., Pu,] = [u,0,...,0], therefore

AU = [Au, Aus, . .., Auy) = [u, —ug, ..., —uy,) = V.

Both U,V are orthogonal matrices. Post-multiplying the above relation by U? =
U=, we obtain A = VU7, which is the SVD of A, with V the left singular vectors,
and U the right singular vectors. Note that every singular value of A is one, which
is consistent with A? = AAT = ATA=1.

The relationship with the SVD is simply that the eigenvectors u,us, ..., u, are
the right singular vectors as well. Flipping the signs on the last n — 1 eigenvectors
provides the left singular vectors.

(h) We want to solve
max || Az + b||2.

2 tlef2<1

Using the SVD of A = UVT, we reduce the problem to

max ||z + UTb”Q,
z:||2]]2<1

where b = UTb, and & = VTz. The solution is obvious: simply choose a unit-norm
vector in the same direction as UTb:

. U™ UM
O T Tl
We obtain
V- ATb: Ab _ b
bl ~ Tell (bl

where b = f(0) = 2(I — P)x is the point symmetric to 0 about the line L.

In other words, the worst-case input in the ball {z : ||z|s < 1} is simply the one
that extends away from the line in the direction opposite to the projection of 0
on the line.

3. (6 points) We are given m of points z1, ..., z, in R". To a given normalized direction
w € R" (JJw||s = 1), we associate the line with direction w passing through the origin,
L(w)={tw : t € R}.



We then consider the projection of the points z;, ¢ = 1,...,m, on the line £(w), and
look at the associated coordinates of the points on the line. These projected values are
given by t;(w) := argmtin ltw — zl|o, i = 1,...,m.

We assume that for any w, the empirical average (w) of the projected values t;(w),
i =1,...,m, and their empirical variance o?(w), are both constant, independent of
the direction w (wih ||wl||; = 1). Denote by # and o2 the (constant) empirical average
and variance. Justify your answer to the following as carefully as you can.

(a) Show that t;(w) = zfw,i=1,...,m.

(b) Show that the empirical average of the data points,

m
. 1
T = — E X,
m -
=1

1S zero.

(c¢) Show that the empirical covariance matrix of the data points,

is of the form o2 - I, where I is the identity matrix of order n. (Hint: the largest
eigenvalue A\, of the matrix 3 can be written as: A\, = max,, {wTZw cwlw =
1}, and a similar expression holds for the smallest eigenvalue.)

Solutions:
(a) For a given i = 1,...,m, we have
ti(w) = arg min |[tw — 2|2

Let us drop ¢ for a moment, and solve the least-squares problem with variable
teR:

pti= mtin |tw — z||3.
One can apply the closed-form solution for least-squares problem, in which the ma-
trix involved is the full column-rank matrix w. This leads to t(w) = (ww)twlz =
wlx. (Recall that ||w]js = 1.)

Alternatively, we can solve the above problem directly, exploiting again ||w|z = 1:
Pt = mtin t2 = 2wl )t + |25 = mtin (t — (w'2))? + C, with C := ||z[3 — (w”x)>.

The quantity C' is constant (independent of the variable t). The first term in
the objective function above is non-negative, hence p* > C. This lower bound is
attained with t = 27 w.



(b) The empirical average of the numbers ¢;(w), i =1,...,m, is

m

R 1 1m
t —— t; — Ty = wl's
(w) mg (w) mglw Ti=w T

=1

where 2 is the empirical average of the data points. We obtain that there is a
constant a € R such that

Vw, |wla=1: w's

Q.

Expressing the condition above for both w and —w, we obtain that o = 0. This
means that Z is orthogonal to any (unit-norm) vector, hence it is zero.

(¢) The empirical variance of the numbers ¢;(w), i = 1,...,m, is given by
2 RS VY2
o (w) = EZ(ti(w) — t(w))".
i=1

T

Exploiting ¢;(w) = w"2;, i = 1,...,m, and {(w) = w'2 = 0, we obtain

1 & 1
R Y O R

i=1

where ¥ is the empirical covariance matrix of the data points. The property of
constant variance is thus equivalent to the fact that the quadratic form w —
wYw is a constant function on the unit ball {w : ||Jw|j; = 1}. We have denoted
by o2 this constant.

The largest and smallest eigenvalue of ¥ admit the variational representation

Amax(X) = Hnr|1lax1 w!Lw, Apin(X) = Hnﬁir—ll wiYw.

Since the objective function of these problem is the same constant function, we
obtain that Apax(2) = Amin(X) = 0%, Hence all eigenvalues of ¥ are equal, to o2.
That is, the diagonal matrix of eigenvalues is given by A = o*I. The eigenvalue
decomposition of ¥ is of the form ¥ = UTAU, with U an orthogonal matrix of
eigenvectors. Since A = 0?1, we obtain that ¥ = o?UTU = ¢°I as well.



