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Midterm Solutions

1. (4 points) Consider the set in R3, defined by the equation

P :=
{
x ∈ R3 : x1 + 2x2 + 3x3 = 1

}
.

(a) Show that the set P is an affine subspace of dimension 2. To this end, express it
as x0 + span(x1, x2), where x0 ∈ P , and x1, x2 are independent vectors.

(b) Find the minimum Euclidean distance from 0 to the set P . Find a point that
achieves the minimum distance. (Hint: either apply a formula if you know it, or
prove that the minimum-distance point is proportional to the vector a := (1, 2, 3).)

Solutions:

(a) The affine subspace P is of dimension 2 in R3, it is a (hyper-) plane. To show
this, we solve the equation for one of the variables, say x1:

x1 = 1− 2x2 − 3x3.

This shows that any vector x ∈ P can be expressed as

x =

 1− 2x2 − 3x3

x2

x3

 =

 1
0
0

+ x2

 −2
1
0

+ x3

 −3
0
1

 ,

with x2, x3 free parameters. Thus, P = x0 + span(x1, x2), with

x0 =

 1
0
0

 , x1 =

 −2
1
0

 , x2 =

 −3
0
1

 .

We check that the two vectors x1, x2 are indeed independent, since λx1 +µx2 = 0
implies λ = µ = 0.

(b) The minimum distance to the affine set {x : Ax = b}, with b ∈ Rm, and
A ∈ Rm×n full row rank (that is, AAT is positive-definite), is given by the formula
x∗ = AT (AAT )−1b. Applying this formula to A = aT , b = 1, yields

x∗ =
a

aTa
=

1

14

 1
2
3

 .
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The minimum distance is ‖x∗‖2 = 1/
√
aTa = 1/

√
14.

Alternatively, we notice that any vector x ∈ R3 can be decomposed as x = ta+z,
with t ∈ R, and z ∈ R3, with zTa = 0. The condition x ∈ P then implies
t = 1/aTa. Since ‖x‖22 = t2aTa + zT z = (1/aTa) + zT z, the objective function of
the minimum Euclidean distance problem

min
x∈P
‖x‖2 = min

z

√
1

aTa
+ zT z : aT z = 0

is minimal when z = 0. This shows that x∗ = a/(aTa), as claimed.

2. (8 points) Consider the operation of finding the point symmetric to a given point about
a given line L in Rn.

x0

0

x

p

f

L

f

Figure 1: A point and its symmetric about the line L.

We define the line as L := {x0 + tu, t ∈ R}, where x0 is a point on the line, and u its
direction, which we assume is normalized: ‖u‖2 = 1. For a given point x ∈ Rn, We
denote by f(x) ∈ Rn the point that is symmetric to x about the line. (See Fig 1.)
That is, f(x) = 2p(x)− x where p(x) is the projection of x on the line:

p(x) = arg min
p∈L
‖p− x‖2

(a) Show that the mapping f is affine. Describe it in terms of a n×n matrix A and a
n× 1 vector b, such that f(x) = Ax+ b for every x. (It will be useful to use the
notation P := uuT .)

(b) What is the geometric interpretation of the vector b?

(c) Show that the mapping f is linear if and only if the line passes through 0.

(d) Show that f(f(x)) = x for every x. What is the geometric meaning of this
property?
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(e) What is the range and nullspace of the matrix A? What is the rank of A? Is A
invertible?

(f) Show that A is symmetric, find its eigenvalue decomposition (EVD). Hint: define
u2, . . . , un to be an orthonormal basis for the subspace orthogonal to u, and show
that the orthogonal matrix U := [u, u2, . . . , un] contains eigenvectors of A.

(g) Find an SVD decomposition of A. What is the relationship between the EVD of
A with its SVD?

(h) Assume that the input is bounded: ‖x‖2 ≤ 1. Find a bound on the Euclidean
norm of the output f(x). Find an input x that achieves the bound.

Solutions:

(a) The minimum of the function with values

h(t) = ‖tu+ x0 − x‖22 = t2 − 2tuT (x− x0) + ‖x− x0‖22
= (t− uT (x− x0))

2 + constant

is obtained with t(x) := uT (x− x0). Thus, we have

p(x) = t(x)u+ x0 = (uT (x− x0))u+ x0 = P (x− x0) + x0, P := uuT .

Hence
f(x) = 2p(x)− x = (2P − I)(x− x0) + x0 = Ax+ b,

where A = 2P − I, b = 2(I − P )x0.

(b) Since f(0) = b, the latter is simply the symmetric to the origin about the line.

(c) The mapping is linear if only if b = 0, that is, when x0 satisfies Px0 = x0. Hence,
x0 = uuTx0 = (uTx0)u is proportional to u. In that case, the line goes through 0,
since 0 = x0 + tu, with t = −(uTx0).

(d) We have Pu = u. Further, P 2 = (uuT )(uuT ) = (uTu)uuT = uuT = P . The latter
implies

A2 = (2P − I)(2P − I) = 4P 2 − 4P + I = I.

In addition, Pb = 2P (I − P )x0 = 0. We obtain Ab = (2P − I)b = −b. We thus
obtain that

f(f(x)) = A(Ax+ b) + b = A2x+ Ab+ b = x− b+ b = x.

The geometry of this is simply that the symmetric to the symmetric is itself.

(e) The nullspace of A is the set of vectors with Ax = 0, meaning 2Px = x. Thus,
x = 2(uTx)u is proportional to u. Since Ax = 0, but Au = u 6= 0, we must have
uTx = 0, hence x = 2(uTx)u = 0. We conclude that the nullspace is {0}, the
range is Rn, and A is full rank, hence invertible since it is also square.
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(f) Since A = 2uuT − I, it is symmetric.

Let u2, . . . , un be an orthonormal basis for the subspace orthogonal to u; we have
uT

i u = 0, i = 2, . . . , n. We have Au = u, Aui = −ui, i = 2, . . . , n. Hence the vec-
tor u is an eigenvector associated with the eigenvalue 1, and the ui, i = 2, . . . , n,
are eigenvectors all associated with the eigenvalue −1. Writing the previous con-
ditions compactly as AU = UΛ, with U = [u, u2, . . . , un] an orthogonal matrix,
Λ = diag(1,−1, . . . ,−1), we obtain that A admits the symmetric eigenvalue de-
composition A = UΛUT .

(g) We have Pui = (uTui)u = 0, i = 2, . . . , n. With U := [u, u2, . . . , un], we get
PU = [Pu, Pu2, . . . , Pun] = [u, 0, . . . , 0], therefore

AU = [Au,Au2, . . . , Aun] = [u,−u2, . . . ,−un] =: V.

Both U, V are orthogonal matrices. Post-multiplying the above relation by UT =
U−1, we obtain A = V UT , which is the SVD of A, with V the left singular vectors,
and U the right singular vectors. Note that every singular value of A is one, which
is consistent with A2 = AAT = ATA = I.

The relationship with the SVD is simply that the eigenvectors u, u2, . . . , un are
the right singular vectors as well. Flipping the signs on the last n−1 eigenvectors
provides the left singular vectors.

(h) We want to solve
max

x : ‖x‖2≤1
‖Ax+ b‖2.

Using the SVD of A = UV T , we reduce the problem to

max
x̃ : ‖x̃‖2≤1

‖x̃+ UT b‖2,

where b̃ = UT b, and x̃ = V Tx. The solution is obvious: simply choose a unit-norm
vector in the same direction as UT b:

x̃ =
UT b

‖UT b‖2
=
UT b

‖b‖2
.

We obtain

x = V x̃ =
AT b

‖b‖2
=

Ab

‖b‖2
= − b

‖b‖2
,

where b = f(0) = 2(I − P )x0 is the point symmetric to 0 about the line L.

In other words, the worst-case input in the ball {x : ‖x‖2 ≤ 1} is simply the one
that extends away from the line in the direction opposite to the projection of 0
on the line.

3. (6 points) We are given m of points x1, . . . , xm in Rn. To a given normalized direction
w ∈ Rn (‖w‖2 = 1), we associate the line with direction w passing through the origin,
L(w) = {tw : t ∈ R}.
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We then consider the projection of the points xi, i = 1, . . . ,m, on the line L(w), and
look at the associated coordinates of the points on the line. These projected values are
given by ti(w) := arg min

t
‖tw − xi‖2, i = 1, . . . ,m.

We assume that for any w, the empirical average t̂(w) of the projected values ti(w),
i = 1, . . . ,m, and their empirical variance σ2(w), are both constant, independent of
the direction w (wih ‖w‖2 = 1). Denote by t̂ and σ2 the (constant) empirical average
and variance. Justify your answer to the following as carefully as you can.

(a) Show that ti(w) = xT
i w, i = 1, . . . ,m.

(b) Show that the empirical average of the data points,

x̂ :=
1

m

m∑
i=1

xi,

is zero.

(c) Show that the empirical covariance matrix of the data points,

Σ :=
1

m

m∑
i=1

(xi − x̂)(xi − x̂)T ,

is of the form σ2 · I, where I is the identity matrix of order n. (Hint: the largest
eigenvalue λmax of the matrix Σ can be written as: λmax = maxw {wT Σw : wTw =
1}, and a similar expression holds for the smallest eigenvalue.)

Solutions:

(a) For a given i = 1, . . . ,m, we have

ti(w) = arg min
t
‖tw − xi‖2.

Let us drop i for a moment, and solve the least-squares problem with variable
t ∈ R:

p∗ := min
t
‖tw − x‖22.

One can apply the closed-form solution for least-squares problem, in which the ma-
trix involved is the full column-rank matrix w. This leads to t(w) = (wTw)−1wTx =
wTx. (Recall that ‖w‖2 = 1.)

Alternatively, we can solve the above problem directly, exploiting again ‖w‖2 = 1:

p∗ = min
t

t2− 2(wTx)t+ ‖x‖22 = min
t

(t− (wTx))2 +C, with C := ‖x‖22− (wTx)2.

The quantity C is constant (independent of the variable t). The first term in
the objective function above is non-negative, hence p∗ ≥ C. This lower bound is
attained with t = xTw.
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(b) The empirical average of the numbers ti(w), i = 1, . . . ,m, is

t̂(w) =
1

m

m∑
i=1

ti(w) =
1

m

m∑
i=1

wTxi = wT x̂,

where x̂ is the empirical average of the data points. We obtain that there is a
constant α ∈ R such that

∀ w, ‖w‖2 = 1 : wT x̂ = α.

Expressing the condition above for both w and −w, we obtain that α = 0. This
means that x̂ is orthogonal to any (unit-norm) vector, hence it is zero.

(c) The empirical variance of the numbers ti(w), i = 1, . . . ,m, is given by

σ2(w) =
1

m

m∑
i=1

(ti(w)− t̂(w))2.

Exploiting ti(w) = wTxi, i = 1, . . . ,m, and t̂(w) = wT x̂ = 0, we obtain

σ2(w) =
1

m

m∑
i=1

(wTxi)
2 =

1

m

m∑
i=1

(wTxi)(x
T
i w) = wT

(
1

m

m∑
i=1

xix
T
i

)
w = wT Σw,

where Σ is the empirical covariance matrix of the data points. The property of
constant variance is thus equivalent to the fact that the quadratic form w →
wT Σw is a constant function on the unit ball {w : ‖w‖2 = 1}. We have denoted
by σ2 this constant.

The largest and smallest eigenvalue of Σ admit the variational representation

λmax(Σ) = max
‖w‖2=1

wT Σw, λmin(Σ) = min
‖w‖2=1

wT Σw.

Since the objective function of these problem is the same constant function, we
obtain that λmax(Σ) = λmin(Σ) = σ2. Hence all eigenvalues of Σ are equal, to σ2.
That is, the diagonal matrix of eigenvalues is given by Λ = σ2I. The eigenvalue
decomposition of Σ is of the form Σ = UT ΛU , with U an orthogonal matrix of
eigenvectors. Since Λ = σ2I, we obtain that Σ = σ2UTU = σ2I as well.
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