Midterm Solutions

1. (4 points) Consider the set in \mathbf{R}^{3}, defined by the equation

$$
\mathcal{P}:=\left\{x \in \mathbf{R}^{3}: x_{1}+2 x_{2}+3 x_{3}=1\right\} .
$$

(a) Show that the set \mathcal{P} is an affine subspace of dimension 2 . To this end, express it as $x^{0}+\operatorname{span}\left(x^{1}, x^{2}\right)$, where $x^{0} \in \mathcal{P}$, and x^{1}, x^{2} are independent vectors.
(b) Find the minimum Euclidean distance from 0 to the set \mathcal{P}. Find a point that achieves the minimum distance. (Hint: either apply a formula if you know it, or prove that the minimum-distance point is proportional to the vector $a:=(1,2,3)$.)

Solutions:

(a) The affine subspace \mathcal{P} is of dimension 2 in \mathbf{R}^{3}, it is a (hyper-) plane. To show this, we solve the equation for one of the variables, say x_{1} :

$$
x_{1}=1-2 x_{2}-3 x_{3} .
$$

This shows that any vector $x \in \mathcal{P}$ can be expressed as

$$
x=\left(\begin{array}{c}
1-2 x_{2}-3 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)
$$

with x_{2}, x_{3} free parameters. Thus, $\mathcal{P}=x^{0}+\boldsymbol{\operatorname { s p a n }}\left(x^{1}, x^{2}\right)$, with

$$
x^{0}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), x^{1}=\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right), x^{2}=\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)
$$

We check that the two vectors x^{1}, x^{2} are indeed independent, since $\lambda x^{1}+\mu x^{2}=0$ implies $\lambda=\mu=0$.
(b) The minimum distance to the affine set $\{x: A x=b\}$, with $b \in \mathbf{R}^{m}$, and $A \in \mathbf{R}^{m \times n}$ full row rank (that is, $A A^{T}$ is positive-definite), is given by the formula $x^{*}=A^{T}\left(A A^{T}\right)^{-1} b$. Applying this formula to $A=a^{T}, b=1$, yields

$$
x^{*}=\frac{a}{a^{T} a}=\frac{1}{14}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
$$

The minimum distance is $\left\|x^{*}\right\|_{2}=1 / \sqrt{a^{T} a}=1 / \sqrt{14}$.
Alternatively, we notice that any vector $x \in \mathbf{R}^{3}$ can be decomposed as $x=t a+z$, with $t \in \mathbf{R}$, and $z \in \mathbf{R}^{3}$, with $z^{T} a=0$. The condition $x \in \mathcal{P}$ then implies $t=1 / a^{T} a$. Since $\|x\|_{2}^{2}=t^{2} a^{T} a+z^{T} z=\left(1 / a^{T} a\right)+z^{T} z$, the objective function of the minimum Euclidean distance problem

$$
\min _{x \in \mathcal{P}}\|x\|_{2}=\min _{z} \sqrt{\frac{1}{a^{T} a}+z^{T} z}: a^{T} z=0
$$

is minimal when $z=0$. This shows that $x^{*}=a /\left(a^{T} a\right)$, as claimed.
2. (8 points) Consider the operation of finding the point symmetric to a given point about a given line \mathcal{L} in \mathbf{R}^{n}.

Figure 1: A point and its symmetric about the line \mathcal{L}.

We define the line as $\mathcal{L}:=\left\{x_{0}+t u, t \in \mathbf{R}\right\}$, where x_{0} is a point on the line, and u its direction, which we assume is normalized: $\|u\|_{2}=1$. For a given point $x \in \mathbf{R}^{n}$, We denote by $f(x) \in \mathbf{R}^{n}$ the point that is symmetric to x about the line. (See Fig 1.) That is, $f(x)=2 p(x)-x$ where $p(x)$ is the projection of x on the line:

$$
p(x)=\arg \min _{p \in \mathcal{L}}\|p-x\|_{2}
$$

(a) Show that the mapping f is affine. Describe it in terms of a $n \times n$ matrix A and a $n \times 1$ vector b, such that $f(x)=A x+b$ for every x. (It will be useful to use the notation $P:=u u^{T}$.)
(b) What is the geometric interpretation of the vector b ?
(c) Show that the mapping f is linear if and only if the line passes through 0 .
(d) Show that $f(f(x))=x$ for every x. What is the geometric meaning of this property?
(e) What is the range and nullspace of the matrix A ? What is the rank of A ? Is A invertible?
(f) Show that A is symmetric, find its eigenvalue decomposition (EVD). Hint: define u_{2}, \ldots, u_{n} to be an orthonormal basis for the subspace orthogonal to u, and show that the orthogonal matrix $U:=\left[u, u_{2}, \ldots, u_{n}\right]$ contains eigenvectors of A.
(g) Find an SVD decomposition of A. What is the relationship between the EVD of A with its SVD?
(h) Assume that the input is bounded: $\|x\|_{2} \leq 1$. Find a bound on the Euclidean norm of the output $f(x)$. Find an input x that achieves the bound.

Solutions:

(a) The minimum of the function with values

$$
\begin{aligned}
h(t)=\left\|t u+x_{0}-x\right\|_{2}^{2} & =t^{2}-2 t u^{T}\left(x-x_{0}\right)+\left\|x-x_{0}\right\|_{2}^{2} \\
& =\left(t-u^{T}\left(x-x_{0}\right)\right)^{2}+\mathrm{constant}
\end{aligned}
$$

is obtained with $t(x):=u^{T}\left(x-x_{0}\right)$. Thus, we have

$$
p(x)=t(x) u+x_{0}=\left(u^{T}\left(x-x_{0}\right)\right) u+x_{0}=P\left(x-x_{0}\right)+x_{0}, \quad P:=u u^{T} .
$$

Hence

$$
f(x)=2 p(x)-x=(2 P-I)\left(x-x_{0}\right)+x_{0}=A x+b,
$$

where $A=2 P-I, b=2(I-P) x_{0}$.
(b) Since $f(0)=b$, the latter is simply the symmetric to the origin about the line.
(c) The mapping is linear if only if $b=0$, that is, when x_{0} satisfies $P x_{0}=x_{0}$. Hence, $x_{0}=u u^{T} x_{0}=\left(u^{T} x_{0}\right) u$ is proportional to u. In that case, the line goes through 0 , since $0=x_{0}+t u$, with $t=-\left(u^{T} x_{0}\right)$.
(d) We have $P u=u$. Further, $P^{2}=\left(u u^{T}\right)\left(u u^{T}\right)=\left(u^{T} u\right) u u^{T}=u u^{T}=P$. The latter implies

$$
A^{2}=(2 P-I)(2 P-I)=4 P^{2}-4 P+I=I
$$

In addition, $P b=2 P(I-P) x_{0}=0$. We obtain $A b=(2 P-I) b=-b$. We thus obtain that

$$
f(f(x))=A(A x+b)+b=A^{2} x+A b+b=x-b+b=x .
$$

The geometry of this is simply that the symmetric to the symmetric is itself.
(e) The nullspace of A is the set of vectors with $A x=0$, meaning $2 P x=x$. Thus, $x=2\left(u^{T} x\right) u$ is proportional to u. Since $A x=0$, but $A u=u \neq 0$, we must have $u^{T} x=0$, hence $x=2\left(u^{T} x\right) u=0$. We conclude that the nullspace is $\{0\}$, the range is \mathbf{R}^{n}, and A is full rank, hence invertible since it is also square.
(f) Since $A=2 u u^{T}-I$, it is symmetric.

Let u_{2}, \ldots, u_{n} be an orthonormal basis for the subspace orthogonal to u; we have $u_{i}^{T} u=0, i=2, \ldots, n$. We have $A u=u, A u_{i}=-u_{i}, i=2, \ldots, n$. Hence the vector u is an eigenvector associated with the eigenvalue 1 , and the $u_{i}, i=2, \ldots, n$, are eigenvectors all associated with the eigenvalue -1 . Writing the previous conditions compactly as $A U=U \Lambda$, with $U=\left[u, u_{2}, \ldots, u_{n}\right]$ an orthogonal matrix, $\Lambda=\operatorname{diag}(1,-1, \ldots,-1)$, we obtain that A admits the symmetric eigenvalue decomposition $A=U \Lambda U^{T}$.
(g) We have $P u_{i}=\left(u^{T} u_{i}\right) u=0, i=2, \ldots, n$. With $U:=\left[u, u_{2}, \ldots, u_{n}\right]$, we get $P U=\left[P u, P u_{2}, \ldots, P u_{n}\right]=[u, 0, \ldots, 0]$, therefore

$$
A U=\left[A u, A u_{2}, \ldots, A u_{n}\right]=\left[u,-u_{2}, \ldots,-u_{n}\right]=: V .
$$

Both U, V are orthogonal matrices. Post-multiplying the above relation by $U^{T}=$ U^{-1}, we obtain $A=V U^{T}$, which is the SVD of A, with V the left singular vectors, and U the right singular vectors. Note that every singular value of A is one, which is consistent with $A^{2}=A A^{T}=A^{T} A=I$.
The relationship with the SVD is simply that the eigenvectors u, u_{2}, \ldots, u_{n} are the right singular vectors as well. Flipping the signs on the last $n-1$ eigenvectors provides the left singular vectors.
(h) We want to solve

$$
\max _{x:\|x\|_{2} \leq 1}\|A x+b\|_{2}
$$

Using the SVD of $A=U V^{T}$, we reduce the problem to

$$
\max _{\tilde{x}:\|\tilde{x}\|_{2} \leq 1}\left\|\tilde{x}+U^{T} b\right\|_{2},
$$

where $\tilde{b}=U^{T} b$, and $\tilde{x}=V^{T} x$. The solution is obvious: simply choose a unit-norm vector in the same direction as $U^{T} b$:

$$
\tilde{x}=\frac{U^{T} b}{\left\|U^{T} b\right\|_{2}}=\frac{U^{T} b}{\|b\|_{2}}
$$

We obtain

$$
x=V \tilde{x}=\frac{A^{T} b}{\|b\|_{2}}=\frac{A b}{\|b\|_{2}}=-\frac{b}{\|b\|_{2}},
$$

where $b=f(0)=2(I-P) x_{0}$ is the point symmetric to 0 about the line \mathcal{L}.
In other words, the worst-case input in the ball $\left\{x:\|x\|_{2} \leq 1\right\}$ is simply the one that extends away from the line in the direction opposite to the projection of 0 on the line.
3. (6 points) We are given m of points x_{1}, \ldots, x_{m} in \mathbf{R}^{n}. To a given normalized direction $w \in \mathbf{R}^{n}\left(\|w\|_{2}=1\right)$, we associate the line with direction w passing through the origin, $\mathcal{L}(w)=\{t w: t \in \mathbf{R}\}$.

We then consider the projection of the points $x_{i}, i=1, \ldots, m$, on the line $\mathcal{L}(w)$, and look at the associated coordinates of the points on the line. These projected values are given by $t_{i}(w):=\arg \min _{t}\left\|t w-x_{i}\right\|_{2}, i=1, \ldots, m$.
We assume that for any w, the empirical average $\hat{t}(w)$ of the projected values $t_{i}(w)$, $i=1, \ldots, m$, and their empirical variance $\sigma^{2}(w)$, are both constant, independent of the direction w (wih $\|w\|_{2}=1$). Denote by \hat{t} and σ^{2} the (constant) empirical average and variance. Justify your answer to the following as carefully as you can.
(a) Show that $t_{i}(w)=x_{i}^{T} w, i=1, \ldots, m$.
(b) Show that the empirical average of the data points,

$$
\hat{x}:=\frac{1}{m} \sum_{i=1}^{m} x_{i}
$$

is zero.
(c) Show that the empirical covariance matrix of the data points,

$$
\Sigma:=\frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\hat{x}\right)\left(x_{i}-\hat{x}\right)^{T},
$$

is of the form $\sigma^{2} \cdot I$, where I is the identity matrix of order n. (Hint: the largest eigenvalue $\lambda_{\text {max }}$ of the matrix Σ can be written as: $\lambda_{\max }=\max _{w}\left\{w^{T} \Sigma w: w^{T} w=\right.$ 1 , and a similar expression holds for the smallest eigenvalue.)

Solutions:

(a) For a given $i=1, \ldots, m$, we have

$$
t_{i}(w)=\arg \min _{t}\left\|t w-x_{i}\right\|_{2} .
$$

Let us drop i for a moment, and solve the least-squares problem with variable $t \in \mathbf{R}$:

$$
p^{*}:=\min _{t}\|t w-x\|_{2}^{2}
$$

One can apply the closed-form solution for least-squares problem, in which the matrix involved is the full column-rank matrix w. This leads to $t(w)=\left(w^{T} w\right)^{-1} w^{T} x=$ $w^{T} x$. (Recall that $\|w\|_{2}=1$.)
Alternatively, we can solve the above problem directly, exploiting again $\|w\|_{2}=1$: $p^{*}=\min _{t} t^{2}-2\left(w^{T} x\right) t+\|x\|_{2}^{2}=\min _{t}\left(t-\left(w^{T} x\right)\right)^{2}+C$, with $C:=\|x\|_{2}^{2}-\left(w^{T} x\right)^{2}$.

The quantity C is constant (independent of the variable t). The first term in the objective function above is non-negative, hence $p^{*} \geq C$. This lower bound is attained with $t=x^{T} w$.
(b) The empirical average of the numbers $t_{i}(w), i=1, \ldots, m$, is

$$
\hat{t}(w)=\frac{1}{m} \sum_{i=1}^{m} t_{i}(w)=\frac{1}{m} \sum_{i=1}^{m} w^{T} x_{i}=w^{T} \hat{x}
$$

where \hat{x} is the empirical average of the data points. We obtain that there is a constant $\alpha \in \mathbf{R}$ such that

$$
\forall w, \quad\|w\|_{2}=1: w^{T} \hat{x}=\alpha
$$

Expressing the condition above for both w and $-w$, we obtain that $\alpha=0$. This means that \hat{x} is orthogonal to any (unit-norm) vector, hence it is zero.
(c) The empirical variance of the numbers $t_{i}(w), i=1, \ldots, m$, is given by

$$
\sigma^{2}(w)=\frac{1}{m} \sum_{i=1}^{m}\left(t_{i}(w)-\hat{t}(w)\right)^{2}
$$

Exploiting $t_{i}(w)=w^{T} x_{i}, i=1, \ldots, m$, and $\hat{t}(w)=w^{T} \hat{x}=0$, we obtain

$$
\sigma^{2}(w)=\frac{1}{m} \sum_{i=1}^{m}\left(w^{T} x_{i}\right)^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(w^{T} x_{i}\right)\left(x_{i}^{T} w\right)=w^{T}\left(\frac{1}{m} \sum_{i=1}^{m} x_{i} x_{i}^{T}\right) w=w^{T} \Sigma w
$$

where Σ is the empirical covariance matrix of the data points. The property of constant variance is thus equivalent to the fact that the quadratic form $w \rightarrow$ $w^{T} \Sigma w$ is a constant function on the unit ball $\left\{w:\|w\|_{2}=1\right\}$. We have denoted by σ^{2} this constant.
The largest and smallest eigenvalue of Σ admit the variational representation

$$
\lambda_{\max }(\Sigma)=\max _{\|w\|_{2}=1} w^{T} \Sigma w, \quad \lambda_{\min }(\Sigma)=\min _{\|w\|_{2}=1} w^{T} \Sigma w
$$

Since the objective function of these problem is the same constant function, we obtain that $\lambda_{\max }(\Sigma)=\lambda_{\min }(\Sigma)=\sigma^{2}$. Hence all eigenvalues of Σ are equal, to σ^{2}. That is, the diagonal matrix of eigenvalues is given by $\Lambda=\sigma^{2} I$. The eigenvalue decomposition of Σ is of the form $\Sigma=U^{T} \Lambda U$, with U an orthogonal matrix of eigenvectors. Since $\Lambda=\sigma^{2} I$, we obtain that $\Sigma=\sigma^{2} U^{T} U=\sigma^{2} I$ as well.

