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Midterm Solutions

1. (6 points) Find the projection z of the vector x = (2, 1) on the line that passes through
x0 = (1, 2) and with direction given by the vector u = (1, 1).
Solution: The line is the set

L = {x0 + tu : t ∈ R} =

{(
2 + t
1 + t

)
: t ∈ R

}
.

The problem reads
min
z∈L
‖z − x‖2 = min

t
‖x0 + tu− x‖22.

Expanding the squares, we express the objective function as

‖x0 + tu− x‖22 = t2uTu− 2t(x− x0)Tu+ (x− x0)T (x− x0) = uTu(t− α)2 + constant,

where α = (x− x0)Tu/uTu = 0. The optimal t is thus t∗ = 0, hence the projection is

z = x0 + t∗u = x0.
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2. (12 points) Consider the 2× 2 matrix

A =
1√
6

(
2
1

)(
1 −1

)
+

2√
6

(
−1
2

)(
1 1

)
.

(a) What is an SVD of A? Express it as A = USV T , with S the diagonal matrix of
singular values ordered in decreasing fashion. Make sure to check all the properties
required for U, S, V .

(b) Find the semi-axis lengths and principal axes of the ellipsoid

E(A) =
{
Ax : x ∈ R2, ‖x‖2 ≤ 1

}
.

Hint: Use the SVD of A to show that every element of E(A) is of the form y = Uȳ
for some element ȳ in E(S). That is, E(A) = {Uȳ : ȳ ∈ E(S)}. (In other words
the matrix U maps E(S) into the set E(A).) Then analyze the geometry of the
simpler set E(S).

(c) What is the set E(A) when we append a zero vector after the last column of A,
that is A is replaced with Ã = [A, 0] ∈ R2×3?

(d) Same question when we append a row after the last row of A, that is, A is replaced
with Ã = [AT , 0]T ∈ R3×2. Interpret geometrically your result.

Solution:

(a) We have
A = σ1u1v

T
1 + σ2u2v

T
2 = USV T ,

where U = [u1, u2], V = [v1, v2] and S = diag(σ1, σ2), with σ1 = 2, σ2 = 1, and

u1 =
1√
3

(
−1
2

)
, u2 =

1√
3

(
2
1

)
, v1 =

1√
2

(
1
1

)
, v2 =

1√
2

(
1
−1

)
.

The triplet (U, S, V ) is an SVD of A, since S is diagonal with non-negative ele-
ments on the diagonal, and U, V are orthogonal matrices (UTU = V TV = I2). To
check this, we first check that the Euclidean norm of u1, u2, v1, v2 is one. (This is
why we factored the term

√
6 into

√
2 ·
√

3.) In addition, uT1 u2 = vT1 v2 = 0. Thus,
U, V are orthogonal, as claimed.

(b) We have, for every x, y := Ax = US(V Tx) hence y = Uȳ, with ȳ = Sx̄ and
x̄ = V Tx. Since V is orthogonal, ‖x̄‖2 = ‖x‖2. In fact, when x runs the unit
Euclidean sphere, so does x̄. Thus every element of E(A) is of the form y = Uȳ
for some element ȳ in E(S). To analyze E(A) it suffices to analyze E(S) and then
transform the points of the latter set via the mapping ȳ → Uȳ.

Since
E(S) =

{
σ1x̄1e1 + σ1x̄2e2 : x̄21 + x̄22 ≤ 1

}
,
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with e1, e2 the unit vectors, we have

E(A) =
{
σ1x̄1u1 + σ1x̄2u2 : x̄21 + x̄22 ≤ 1

}
.

In the coordinate system defined by the orthonormal basis (u1, u2) the set is an
ellipsoid with semi-axis lengths (σ1, σ2), and principal axes given by the coordinate
axes. In the original system the principal axes are u1, u2.

(c) When we append a zero column after the last column of A we are doing nothing
to E(A). Indeed, the condition

y = Ax for some x ∈ R2, ‖x‖2 ≤ 1

is the same as
y =

(
A 0

)
z for some z ∈ R3, ‖z‖2 ≤ 1.

Geometrically, the projection of a 3-dimensional unit sphere on the first two coor-
dinates is the 2-dimensional unit sphere. Hence we loose nothing if the 2D sphere
used to generate the points x is replaced by the projection of the 3D sphere.

(d) Here we append a row after the last row of A, replacing A with

Ã =

(
A
0

)
∈ R3×2.

The set E(Ã) is the set of points of the form (y, 0) ∈ R3 where y ∈ E(A). This
means that we are simply embedding the ellipsoid E(A) into a 3D space, instead
of the original 2D one. The set E(Ã) is now a degenerate (flat) ellipsoid in R3,
entirely contained on the plane defined by the first two unit vectors in R3.
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3. (12 points) We consider the index fund tracking problem that arises in finance. The
goal is to track a certain time-series containing the returns (the % gain if we invest one
dollar at the beginning of period t, and collect it at the end of the period) of a certain
index, for example the SP 500 index. The index by itself may not be tradable, or it
may be very costly to trade it because it has too many assets in it. However we can try
to invest in a few tradable assets, such as stocks, and hope to closely follow the index
so that the return of our portfolio matches that of the index. In order to minimize the
transaction costs involved in trading each asset, we would like to limit the number of
assets present in the portfolio.

Mathematically, we are given a real-valued time-series s(t) with time t from {1, . . . , T}.
Here, s(t) is the return of the index at time t. We also have a universe of n possible
tradable assets, with, si(t), t = 1, . . . , T the return time-series for asset i, i = 1, . . . , n.
Investing an amount xi in the i-th asset at the beginning of period t produces the
return xisi(t) at the end of period t.

Here our variable is the vector of amounts invested in each asset, x = (x1, . . . , xn),
which we refer to as the “portfolio vector”. We plan to find the vector x ∈ Rn based
on the available data, and hold it for some time in the future.

(a) Express the time series of returns of the portfolio vector x, s(x), as a linear
function of x. (Here the t-th coordinate of s(x) is the return of the portfolio
at time t.) Precisely you will express the time series as a T -dimensional vector
s(x) = Ax, with x ∈ Rn and A a T × n matrix that you will express in terms of
problem data.

(b) We would like to minimize the tracking error, defined as the average squared
error between the return of the index and that of the portfolio. Formulate this
problem as a least-squares problem. In this first model, “shorting” (selling assets)
is allowed, which means that x is allowed to have negative components.

(c) Now we do not allow shorting. Show how to modify the least-squares problem
accordingly, and formulate the new problem as a QP. Make sure to put the QP
in standard form, and state precisely the variables, objective function and con-
straints.

(d) Now we add our concern for transaction costs, which means that we would like to
trade-off the tracking error against the number of assets that have to be traded.
Formulate a QP that accomplishes this. (Shorting is still not allowed.) You
answer does not have to be exact, and may involve an approximation. Again,
make sure to put the QP in standard form, and state precisely the variables,
objective function and constraints. Hint: think about the l1-norm. Note: you can
answer this question even if you did not have the correct problem formulation in
the previous parts.

Solution:
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(a) Let s = (s(1), . . . , s(T )) ∈ RT and si = (si(1), . . . , si(T )) ∈ RT , i = 1, . . . , n. We
have

s(x) =
n∑

i=1

xisi = Ax,

with A = [s1, . . . , sn] a T × n matrix.

(b) The tracking error writes

1

T

T∑
t=1

(
s(t)−

n∑
i=1

xisi(t)

)2

=
1

T
‖Ax− s‖22.

The problem of minimizing the average tracking error by choice of x writes as the
least-squares problem

min
x
‖Ax− s‖22.

(c) When shorting is not allowed we add the constraints x ≥ 0 to the least-squares
problem, resulting in

min
x
‖Ax− s‖22 : x ≥ 0.

The above is a QP. Indeed, it can be written as

min
x

xTQx+ cTx : Cx ≤ d,

which is a QP is standard form, with C = −In, d = 0, c = −2AT s, and Q := ATA
a positive semi-definite matrix.

(d) To control the transaction costs we need to minimize the number of non-zero
components of x, since a zero value in xi means the i-th asset will not have to be
traded. We use the “l1-trick” to minimize the number of non-zero components.
This leads to the following modification to the least-squares problem

min
x
‖Ax− s‖22 + λ‖x‖1 : x ≥ 0

with λ > 0 a parameter that is used to trade-off tracking error against our proxy
for the number of non-zero elements. This also writes

min
x
‖Ax− s‖22 + λ1Tx : x ≥ 0,

which can be again written as the QP in standard form above, with c replaced by
c+ λ1.
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