Quiz 1: Solutions

1. Consider the matrix $A=u v^{T}$, with $u \in \mathbf{R}^{n}, v \in \mathbf{R}^{m}$.
(a) Find the nullspace and range of A.
(b) Explain how to compute an SVD of A.

Solutions: We assume $u \neq 0, v \neq 0$ to avoid trivialities.
(a) For the nullspace, the condition $A x=0$ is written $\left(v^{T} x\right) u=0$. Since $u \neq 0$, we obtain $v^{T} x=0$. That is, the nullspace is the hyperplane going through zero of vectors orthogonal to v.
For the range, we look at the set of vectors of the form $\left(v^{T} x\right) u$, when x ranges the whole space \mathbf{R}^{n}. Clearly it is included in the line going through the origin with direction $u, \mathcal{L}:=\{t u: t \in \mathbf{R}\}$. Now for any point in \mathcal{L}, say of the form $t u$ with $t \in \mathbf{R}$, we can find x such that $t=v^{T} x$; for example $x=\left(t / v^{T} v\right) v$. Thus the nullspace equals to the line \mathcal{L}.
(b) We can write $A=\sigma p q^{T}$, where $p=u /\|u\|_{2}, q=v /\|v\|_{2}, \sigma=\|u\|_{2} \cdot\|v\|_{2}$. This is basically the SVD of A in short form. The full version would require to complete the vector p (resp. q) via orthogonalization to form an orthogonal matrix U that contains p as its first column. Similarly we form an orthogonal matrix V that contains q as its first column. Finally, we set $S=\operatorname{diag}(\sigma, 0, \ldots, 0)$ of size $n \times m$. We have

$$
U S V^{T}=\sigma p q^{T}=A
$$

This proves that the triple (U, S, V) is an SVD of A.
2. Consider the 2×2 matrix

$$
A=\frac{1}{\sqrt{10}}\binom{2}{1}\left(\begin{array}{ll}
1 & -1
\end{array}\right)+\frac{2}{\sqrt{10}}\binom{-1}{2}\left(\begin{array}{ll}
1 & 1
\end{array}\right) .
$$

(a) What is an SVD of A ? Express it as $A=U S V^{T}$, with S the diagonal matrix of singular values ordered in decreasing fashion. Make sure to check all the properties required for U, S, V.
(b) Find the semi-axis lengths and principal axes of the ellipsoid

$$
\mathcal{E}(A)=\left\{A x: x \in \mathbf{R}^{2},\|x\|_{2} \leq 1\right\} .
$$

Hint: Use the SVD of A to show that every element of $\mathcal{E}(A)$ is of the form $y=U \bar{y}$ for some element \bar{y} in $\mathcal{E}(S)$. That is, $\mathcal{E}(A)=\{U \bar{y}: \bar{y} \in \mathcal{E}(S)\}$. (In other words the matrix U maps $\mathcal{E}(S)$ into the set $\mathcal{E}(A)$.) Then analyze the geometry of the simpler set $\mathcal{E}(S)$.
(c) What is the set $\mathcal{E}(A)$ when we append a zero vector after the last column of A, that is A is replaced with $\tilde{A}=[A, 0] \in \mathbf{R}^{2 \times 3}$?
(d) Same question when we append a row after the last row of A, that is, A is replaced with $\tilde{A}=\left[A^{T}, 0\right]^{T} \in \mathbf{R}^{3 \times 2}$. Interpret geometrically your result.

Solution:

(a) We have

$$
A=\sigma_{1} u_{1} v_{1}^{T}+\sigma_{2} u_{2} v_{2}^{T}=U S V^{T}
$$

where $U=\left[u_{1}, u_{2}\right], V=\left[v_{1}, v_{2}\right]$ and $S=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}\right)$, with $\sigma_{1}=2, \sigma_{2}=1$, and

$$
u_{1}=\frac{1}{\sqrt{5}}\binom{-1}{2}, \quad u_{2}=\frac{1}{\sqrt{5}}\binom{2}{1}, \quad v_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}, \quad v_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1} .
$$

The triplet (U, S, V) is an SVD of A, since S is diagonal with non-negative elements on the diagonal, and U, V are orthogonal matrices $\left(U^{T} U=V^{T} V=I_{2}\right)$. To check this, we first check that the Euclidean norm of $u_{1}, u_{2}, v_{1}, v_{2}$ is one. (This is why we factored the term $\sqrt{10}$ into $\sqrt{2} \cdot \sqrt{5}$.) In addition, $u_{1}^{T} u_{2}=v_{1}^{T} v_{2}=0$. Thus, U, V are orthogonal, as claimed.
(b) We have, for every $x, y:=A x=U S\left(V^{T} x\right)$ hence $y=U \bar{y}$, with $\bar{y}=S \bar{x}$ and $\bar{x}=V^{T} x$. Since V is orthogonal, $\|\bar{x}\|_{2}=\|x\|_{2}$. In fact, when x runs the unit Euclidean sphere, so does \bar{x}. Thus every element of $\mathcal{E}(A)$ is of the form $y=U \bar{y}$ for some element \bar{y} in $\mathcal{E}(S)$. To analyze $\mathcal{E}(A)$ it suffices to analyze $\mathcal{E}(S)$ and then transform the points of the latter set via the mapping $\bar{y} \rightarrow U \bar{y}$.
Since

$$
\mathcal{E}(S)=\left\{\sigma_{1} \bar{x}_{1} e_{1}+\sigma_{1} \bar{x}_{2} e_{2}: \bar{x}_{1}^{2}+\bar{x}_{2}^{2} \leq 1\right\},
$$

with e_{1}, e_{2} the unit vectors, we have

$$
\mathcal{E}(A)=\left\{\sigma_{1} \bar{x}_{1} u_{1}+\sigma_{1} \bar{x}_{2} u_{2}: \bar{x}_{1}^{2}+\bar{x}_{2}^{2} \leq 1\right\} .
$$

In the coordinate system defined by the orthonormal basis $\left(u_{1}, u_{2}\right)$ the set is an ellipsoid with semi-axis lengths (σ_{1}, σ_{2}), and principal axes given by the coordinate axes. In the original system the principal axes are u_{1}, u_{2}.
(c) When we append a zero column after the last column of A we are doing nothing to $\mathcal{E}(A)$. Indeed, the condition

$$
y=A x \text { for some } x \in \mathbf{R}^{2}, \quad\|x\|_{2} \leq 1
$$

is the same as

$$
y=\left(\begin{array}{ll}
A & 0
\end{array}\right) z \text { for some } z \in \mathbf{R}^{3}, \quad\|z\|_{2} \leq 1 .
$$

Geometrically, the projection of a 3-dimensional unit sphere on the first two coordinates is the 2-dimensional unit sphere. Hence we loose nothing if the 2D sphere used to generate the points x is replaced by the projection of the 3D sphere.
(d) Here we append a row after the last row of A, replacing A with

$$
\tilde{A}=\binom{A}{0} \in \mathbf{R}^{3 \times 2} .
$$

The set $\mathcal{E}(\tilde{A})$ is the set of points of the form $(y, 0) \in \mathbf{R}^{3}$ where $y \in \mathcal{E}(A)$. This means that we are simply embedding the ellipsoid $\mathcal{E}(A)$ into a 3D space, instead of the original 2 D one. The set $\mathcal{E}(\tilde{A})$ is now a degenerate (flat) ellipsoid in \mathbf{R}^{3}, entirely contained on the plane defined by the first two unit vectors in \mathbf{R}^{3}.

