Lagrangians

- Motivation: want to solve constrained optimization problem

\[
\min_{x \in F} f(x),
\]

especially when \(F, f \) are convex.

- We have tools to solve (convex) unconstrained optimization problems, so we want to convert constrained optimization problems into unconstrained problems.

- First idea: indicator functions, if \(K \) is a set then

\[
I_K(x) = \begin{cases}
\infty, & x \not\in K \\
0, & x \in K.
\end{cases}
\]

Then

\[
\min_{x \in F} f(x) = \min_x (f(x) + I_F(x)).
\]

- Theoretically – great! Solutions to constrained problem are exactly solutions to unconstrained problem.
Practically – terrible! How do we optimize over indicator functions? First derivatives not obvious, iterative optimization is a huge failure. 2/10 would not recommend.

What we want: smooth version of $l_F(x)$ which fulfills this property: optimal solutions are the same for constrained/unconstrained. Let us optimize using regular methods.
Notation: constrained **primal** problem \mathcal{P}_c is

$$p^* = \min_x f(x)$$

s.t.
$$g(x) \leq 0$$
$$h(x) = 0$$

Recall: f scalar valued, g, h vector valued.
Definition (Lagrangian)
Lagrangian $\mathcal{L}(x, \lambda, \nu)$ defined as

$$\mathcal{L}(x, \lambda, \nu) = f(x) + \lambda^T g(x) + \nu^T h(x).$$

Primal problem:

$$p^* = \min_x \max_{\lambda \geq 0, \nu} \mathcal{L}(x, \lambda, \nu).$$

Dual problem:

$$d^* = \max_{\lambda \geq 0} \min_x \mathcal{L}(x, \lambda, \nu).$$

Switching min / max converts from primal to dual problem.
Fact: $d^* \leq p^*$, consequence of Minimax Theorem. (Simple algebra, but not proved here.)
Claim
Our p^* equations are both valid, i.e.

$$\min_{g(x) \leq 0} f(x) = \min_{h(x) = 0} \max_{\lambda \geq 0, \nu} \mathcal{L}(x, \lambda, \nu).$$

Proof.
Write out

$$\mathcal{L}(x, \lambda, \nu) = f(x) + \lambda^T g(x) + \nu^T h(x).$$

If even one $g(x)_i > 0$, then $\lambda_i \to \infty$ implies $\mathcal{L}(x, \lambda, \nu) \to \infty$, so we pick x for which $g(x) \leq 0$ (note because $\lambda_i \geq 0$ we can’t pick $\lambda_i \to -\infty$ for $g(x)_i < 0$). If even one $h(x)_i \neq 0, \nu_i \to \text{sign}(h(x)_i) \cdot \infty$ implies $\mathcal{L}(x, \lambda, \nu) \to \infty$, so we only pick x for which $h(x) = 0$. \qed
Our Lagrangian is exactly what we want for converting constrained problems to unconstrained problems!

Single most important innovation in convex optimization.

Sadly, not always easy to find optimal solution to Lagrangian.
Dual Problem

Dual problem is sometimes easier to solve than primal problem.

\[d^* = \max_{\lambda \geq 0} \min_{x} \mathcal{L}(x, \lambda, nu). \]

- Weak duality: \(d^* \leq p^* \) – intuition: any solution to the dual problem is a lower bound on the primal solution, and if we find one dual solution and primal solution with the same value then they’re both optimal.

- Strong duality: \(d^* = p^* \). If we can solve the dual problem then we’re done.

Theorem (Slater’s Condition)

If \(g(x) \) is convex and feasible region contains an open set (there is an \(x \) for which \(g(x) < 0 \)) then strong duality holds.
KKT

How to actually solve primal/dual problems?

- In some cases we can just take the derivative of L and set to 0 (if L is convex in x, since L is linear in λ, ν).
- In other cases, we have to use KKT conditions to find necessary/sufficient conditions for solution.

Theorem (KKT Necessary Conditions)

Any feasible solution (x^*, λ^*, ν^*) must obey

- **Primal feasibility**: $g(x^*) \leq 0$, $h(x^*) = 0$
- **Dual feasibility**: $\lambda^* \geq 0$
- **Stationarity**:

$$
\nabla_x L(x^*, \lambda^*, \nu^*) = \nabla_x f(x^*) + \left(\nabla_x g(x^*) \right) \lambda^* + \left(\nabla_x h(x^*) \right) \nu^* = 0
$$

- **Complementary slackness**:

$$
\lambda^* \nabla g(x^*) = 0 \text{ or equivalently } \lambda_i^* g(x^*)_i = 0.
$$
Another (more useful) way to write stationarity is

$$\nabla_x f(x^*) + \sum_i \lambda_i^* (\nabla_x g_i(x^*)) + \sum_i \nu_i^* (\nabla_x h_i(x^*)) = 0$$

Obviously first three conditions are necessary. What about complementary slackness? Solution is by exchange argument; if $g(x^*)_i \neq 0$ then $\lambda_i^* = 0$ improves objective value.