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LECTURE 7

Linear Equations

One pint of good wine costs 50
gold pieces, while one pint of poor
wine costs 10. Two pints of wine
are bought for 30 gold pieces. How
much of each kind of wine was
bought?

Jiuzhang Suanshu, 200 B.C.
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Introduction

Linear equations describe the most basic form of relationship among variables in an
engineering problem.

Systems of linear equations are ubiquitous in all branches of science: they appear
for instance in elastic mechanical systems, relating forces to displacements, in
resistive electrical networks, relating voltages to currents, in curve fitting, in many
geometrical problems such as triangulation, trilateration, and localization from
relative position measurements, in discrete-time dynamical systems relating input
and output signals, etc.

Linear equations form the core of linear algebra, and often arise as constraints in
optimization problems.

They are also an important building block of optimization methods, since many
optimization algorithms rely on solution of a set of linear equations as a key step in
the algorithm’s iterations.
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History

An early example
chinese_linear_alg.png (PNG Image, 829 × 572 pixels) https://inst.eecs.berkeley.edu/~ee127a/book/login/Images/chines...

1 of 1 11/8/14, 7:09 AM

Linear equations have been around for
thousands of years. The picture on the left
shows a 17th century Chinese text that
explains the ancient art of fangcheng
(rectangular arrays).
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Examples
An elementary 3 × 2 system

The following is an example of a system of 3 equations in 2 unknowns:

x1 + 4.5x2 = 1,
2x1 + 1.2x2 = −3.2,

−0.1x1 + 8.2x2 = 1.5.

This system can be written in vector format as Ax = y , where A is a 3× 2 matrix,
and y is a 3-vector:

A =

 1 4.5
2 1.2
−0.1 8.2

 , y =

 1
−3.2
1.5

 .

A solution to the linear equations is a vector x ∈ R2 that satisfies the equations.

In the present example, it can be readily verified by hand calculations that the
equations have no solution, i.e., the system is infeasible.
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Examples
Temperature distribution

In some applications we wish to estimate the temperature inside an object (say, an
engine) by sensing the temperature on its boundary.

In this 2D example we wish to estimate
the temperature at the nodes of the grid,
based on four measurements at the
boundary.
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Examples
Temperature distribution: mean-value property

We can use the (discretized) mean-value property, which states that the
temperature at any inside node point is the average of the temperature of its
neighbors. This leads to the linear system

x1 =
1

4
(10 + 30 + x2 + x3),

x2 =
1

4
(x1 + 30 + 0 + 4),

x3 =
1

4
(10 + x1 + x4 + 20),

x4 =
1

4
(x3 + x2 + 0 + 20).
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Examples
Polynomial interpolation

Consider the problem of interpolating a given set of points (xi , yi ), i = 1, . . . ,m,
with a polynomial of degree n − 1

p(x) = an−1x
n−1 + · · ·+ a1x + a0.

The polynomial interpolates the i-th point if and only if p(xi ) = yi , and each of such
conditions is a linear equation on the polynomial coefficients aj , j = 0, . . . , n − 1.

An interpolating polynomial is hence found if the following system of linear
equations in the aj variables has a solution:


1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2

... · · · · · ·
...

1 xm x2
m · · · xn−1

m




a0

a1

a2

...
an−1

 =


y1

y2

...
ym

 ,

where the matrix of coefficients on the left has a so-called Vandermonde structure.
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Examples
CAT scan imaging

Tomography means reconstruction of an image from its sections. The word comes
from the greek “tomos” (slice) and “graph” (description). The problem arises in
many fields, ranging from astronomy to medical imaging.

Computerized Axial Tomography (CAT) is a medical imaging method that
processes large amounts of two-dimensional X-ray images in order to produce a
three-dimensional image. The goal is to picture, for example, the tissue density of
the different parts of the brain, in order to detect anomalies, such as brain tumors.

Typically, the X-ray images represent “slices” of the part of the body that is
examined. Those slices are indirectly obtained via axial measurements of X-ray
attenuation

In CAT for medical imaging, one uses axial (line) measurements to get
two-dimensional images (slices), and from those slices one may proceed to digitally
reconstruct a three-dimensional view. Here, we focus on the process that produces
a single two-dimensional image from axial measurements.
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Examples
CAT scan imaging

CAT scan slices of a human brain (Source: Wikipedia).
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Example: CAT scan imaging

In CAT-based medical imaging, a number of X rays are sent through the tissues to
be examined along different directions, and their intensity after they have traversed
the tissues is captured by a receiver sensor.

For each direction, we record the attenuation of the X ray, by comparing the
intensity of the X ray at the source to the intensity after the X ray has traversed the
tissues, at the receiver’s end.

To a reasonable degree of approximation, the log-ratio of the intensities at the
source and at the receiver is linear in the densities of the tissues traversed.

n
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Examples
CAT scan imaging

A (typically large) number m of beams of intensity I0 at the source travel across the
tissue: the i-th beam, i = 1, . . . ,m, has a path of length aij through voxel j ,
j = 1, . . . , n.

The log-attenuation of the i-th beam intensity due to the j-th voxel is proportional
to the density of the voxel xj times the length of the path, that is aijxj .

The total log-attenuation for beam i is therefore given by the sum of the
log-attenuations:

yi = log
I0
Ii

=
n∑

j=1

aijxj , i = 1, . . . ,m,

where Ii is the intensity of the i-th beam at the receiver end.

Recovering the densities xj from the yi measurements thus amounts to solving a
system of linear equations of the form y = Ax , where A ∈ Rm,n. A is typically a
“fat” matrix, i.e., the system is underdetermined.
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Examples
Traffice flows

Traffic flow

x1

x2

x3

x4

450 400

610 640

520 600

x1 =?, x2 =?, x3 =?, x4 =?

A basic traffic flow estimation problem
involves inferring the amount of cars
going through links based on information
on the amount of cars passing through
neighboring links.
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Examples
Traffic example: flow equations

At each intersection, the incoming traffic has to match the outgoing traffic:

Intersection A: x4 + 610 = x1 + 450,
Intersection B: x1 + 400 = x2 + 640,
Intersection C: x2 + 600 = x3,
Intersection D: x3 = x4 + 520.

We can write this in matrix format: Ax = y , with

A =


−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1

 , y =


−160
240
−600
520

 .

The matrix A is nothing else than the incidence matrix associated with the graph
that has the intersections as nodes and links as edges.

Fa18 15 / 31



Examples
Balance equations in chemistry 1

Chemical reaction with m types of atoms / charges, p reactants, q products:

a1R1 + . . .+ apRp → b1P1 + . . .+ bqPq

Reactant matrix: for i = 1, . . . ,m, j = 1, . . . , p

Rij = number of atoms of type i in reactant Rj

Define m × q product matrix P similarly.

With a ∈ Rp, b ∈ Rq (vectors of reactant and product coefficients)

Ra = (vector of) total numbers of atoms of each type in reactants;

Pb is total numbers of atoms of each type in products;

conservation of mass is Ra = Pb.

1From Boyd & Vandenberghe, http://web.stanford.edu/~boyd/vmls/vmls-slides.pdf
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Examples
Balance equations in chemistry

a1Cr2O2−
7 + a2Fe2+ + a3H+ → b1Cr3+ + b2Fe3+ + b3H2O

5 equations corresponding to each atom Cr, O, Fe, H, or charge.

R =


2 0 0
7 0 0
0 1 0
0 0 1
−2 2 1

 , P =


1 0 0
0 0 1
0 1 0
0 0 2
3 3 0

 .

Solving Ra = Pb, with a1 = 1 (WLOG, since we can always scale a, b), yields

a = (1, 6, 14), b = (2, 6, 7).

Fa18 17 / 31



Example
Linear dynamical systems

xt+1 = Atxt , t = 0, 1, 2, 3, . . .

where At ∈ Rn×n matrices

system is called time-invariant if At = A doesnt depend on time;

from a know initial conditions x0, we can simulate evolution;

model can be extended to include inputs and offset

xt+1 = Atxt + Btut + ct , t = 0, 1, 2, 3, . . .

model can be extended to auto-regressive model

xt+1 = Atxt + At−1xt−1 + . . .+ At−mxt−m, t = m,m + 1, . . .
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Example
Steady-state solution in linear dynamical systems

Consider a linear system with constant input:

xt+1 = Axt + b,

with A ∈ Rn×n, b ∈ Rn. (Trajectory (xt)t≥0 is sometimes called “step response”.)

Steady-state solution: limit of xt as t → +∞, satisfies

(I − A)x∞ = b
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Population dynamics

Model population distribution:

xt ∈ R100 gives population distribution in year t

xt(i) is the number of people with age i − 1 in year t (say, on January 1)

total population in year t is 1>xt

number of people age 70 or older in year t is (070; 130)>xt

Dynamics parameters:

birth rate b ∈ R100, death (or mortality) rate d ∈ R100 ;

bi (resp. di ) is the number of births (resp. deaths) per person with age i − 1;

b and d can vary with time, but well assume they are constant.
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Dynamical equations

xt = Axt , where

A =


b1 b2 . . . b99 b100

1− d1 0 . . . 0 0
0 1− d2 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1− d99 0


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Set of solutions of linear equations

Generic linear equations can be expressed in vector format as

Ax = y ,

where x ∈ Rn is the vector of unknowns, y ∈ Rm is a given vector, and A ∈ Rm,n is
a matrix containing the coefficients of the linear equations.

Key issues are: existence, uniqueness of solutions; characterization of the solution
set:

S
.

= {x ∈ Rn : Ax = y}.

Let a1, . . . , an ∈ Rm denote the columns of A, i.e. A = [a1 · · · an], and notice that
the product Ax is nothing but a linear combination of the columns of A, with
coefficients given by x :

Ax = x1a1 + · · ·+ xnan.

Ax always lies in R(A).

Thus, S 6= ∅ ⇔ y ∈ R(A).
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Set of solutions of linear equations

The linear equation
Ax = y , A ∈ Rm,n

admits a solution if and only if rank([A y ]) = rank(A).

When this existence condition is satisfied, the set of all solutions is the affine set

S = {x = x̄ + Nz},

where x̄ is any vector such that Ax̄ = y , and N ∈ Rn,n−r is a matrix whose columns
span the nullspace of A (hence AN = 0).

In particular, the system has a unique solution if rank([A y ]) = rank(A) and

N (A) = {0}.
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Use case in optimization

Finding the solution set (or determine the set is empty) is ometimes useful in
optimization. Consider an optimization problem with linear equality constraints:

min
x

f0(x) : Ax = b,

with f0 : Rn → R, and A ∈ Rm,n, b ∈ Rm, and x ∈ Rn the variable. We assume
that the problem is feasible, that is, the solution set of Ax = y is not empty.

Since the solution set is affine, any solution is of the form x0 + Nz , with x0 a
particular solution and N a matrix whose columns span the nullspace of A.

We can formulate the above problem as an unconstrained one:

min
z

f0(x0 + Nz).
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Overdetermined, underdetermined, and square systems

Overdetermined systems

The system Ax = y is said to be overdetermined when it has more equations than
unknowns, i.e., when matrix A has more rows then columns (“skinny” matrix):
m > n.

Assume that A is full column rank, that is rank(A) = n. Then, dimN (A) = 0,
hence the system has either one or no solution at all.

Indeed, the most common case for overdetermined systems is that y 6∈ R(A), so
that no solution exists.

In this case, it is often useful to introduce a notion of approximate solution, that is
a solution that renders minimal some suitable measure of the mismatch between Ax
and y (more on this later!)

Fa18 25 / 31



Overdetermined, underdetermined, and square systems

Underdetermined systems

The system Ax = y is said to be underdetermined if it has more unknowns than
equations, i.e., when matrix A has more columns than rows (“wide” matrix):
n > m.

Assume that A is full row rank, that is rank(A) = m, and then R(A) = Rm, thus
dimN (A) = n −m > 0.

The system of linear equations is therefore solvable with infinite possible solutions,
and the set of solutions has “dimension” n −m.

Among all possible solutions, it is often of interest to single out one specific
solution having minimum norm (more on this later!)
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Overdetermined, underdetermined, and square systems

Square systems

The system Ax = y is said to be square when the number of equations is equal to
the number of unknowns, i.e. when matrix A is square: m = n.

If a square matrix is full rank, then it is invertible, and the inverse A−1 is unique
and has the property that A−1A = I .

In the case of square full rank A the solution of the linear system is thus unique and
it is formally written as

x = A−1y .
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Solving via SVD
“Rotate inputs and outputs to make system diagonal”

The linear equation Ax = y , where A ∈ Rm,n and y ∈ Rm, can be fully analyzed
via SVD. If A = UΣ̃V> is the SVD of A (as in Thm. 1 of lecture 6), then Ax = y
is equivalent to

Σ̃x̃ = ỹ , (1)

where x̃
.

= V>x , ỹ
.

= U>y .

Since Σ̃ is a diagonal matrix:

Σ̃ =

[
Σ 0r ,n−r

0m−r ,r 0m−r ,n−r

]
, Σ = diag (σ1, . . . , σr ) � 0.

the system (1) is very easy to solve/analyze.
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Solution via SVD

The system Σ̃x̃ = ỹ writes

σi x̃i = ỹi , i = 1, . . . , r , 0 = ỹi , i = r + 1, . . . ,m.

Two cases can occur:

If the last m − r components of ỹ are not zero, then the above system is
infeasible, and the solution set is empty. This occurs when y is not in the
range of A.

If y ∈ R(A), then the last set of conditions in the above system hold, and we
can solve for x̃ with the first set of conditions: x̃i = ỹi/σi ,i = 1, . . . , r . The
last n − r components of x̃ are free, which corresponds to elements in the
nullspace of A.

If A is full column rank (its nullspace is reduced to {0}), then there is a
unique solution.
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Example

The system Ax = y , with

A =


σ1 0 0
0 σ2 0
0 0 0
0 0 0

 , y =


y1

y2

y3

y4


has no solution if (y3, y4) 6= 0. If y3 = y4 = 0, so that y ∈ R(A), we get the
solution set S = {x0 + Nz : z ∈ R2}, with

x0 =


y1

σ1y2

σ2
0
0

 , N =


0 0
0 0
1 0
0 1

 .
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Using QR
“Rotate outputs to make system triangular”

We may also use the QR decomposition to solve or analyze a system. This time,
the idea is to reduce the system to a triangular one, and then solve by “backward”
substitution (that is, solve one variable at a time, starting from the last one).

Assuming that A is square to simplify, and A = QR with Q>Q = In, then Ax = y
is equivalent to Rx = ỹ

.
= Q>y , which is a triangular system. Solving for xn first,

and substituting to solve for xn−1, etc, leads to the solution.
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