the "critical", points, i.e., points where the gradient is zero, points on the boundaries, and $\pm \infty$.

$$
f_{0}(x) \text { is coltunas as polynomial in } 0 f\left(0_{0}\right)=4
$$

\qquad

$$
\begin{aligned}
& \frac{d f_{0}}{d x}(x)=\left\{\begin{array}{lll}
3 x^{2}-6 x & x \geqslant 0 & \text { Also coninsus, so } \\
-3 x^{2}-6 x & x<0 & f_{0} \in C^{1}(\mathbb{R}, \mathbb{R})
\end{array}\right. \\
& \begin{array}{ll}
\frac{d f_{0}}{d x}(x)=0 \Rightarrow x=1,0,-1 & f(0)=h \\
f(=1)=2
\end{array} \\
& P^{*}=2 \text { argon } f(x)= \pm 1 \\
& \text { ii. Show that the dual problem can be represented as }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tag loo expoisin }
\end{aligned}
$$

sale ILeoren
iii. Next, show that

$$
g_{1}\left(\lambda_{1}, \lambda_{2}\right)=\inf _{x \geqslant 0}^{2} h\left(x, \lambda_{1}, \lambda_{2}\right)
$$

$$
\| \begin{array}{ll}
g_{1}(\vec{\lambda}) \leq-3 \lambda_{1}+\lambda_{2} & \leqslant h\left(2, \lambda_{1}, \lambda_{2}\right) \\
g_{2}(\vec{\lambda}) \leq \lambda_{1}-3 \lambda_{2} . & h\left(x, \lambda_{1}, \lambda_{2}\right)
\end{array}
$$

$$
\begin{aligned}
& \text { show that } g(\vec{\lambda}) \leq 0 \text { for all } \lambda_{1}, x_{2} \geq 0 . \\
& g_{1}(\vec{\lambda})=\operatorname{lnt}(x+1) \frac{x^{3}}{x}-3 x^{2}+4-\lambda_{1}(x-1)+\lambda_{2}(x-1)
\end{aligned}
$$

Use this to show that $g(\vec{\lambda}) \leq 0$ for all $\lambda_{1}, \lambda_{2} \geq$

$$
\begin{array}{ll}
g_{1}(\lambda)=\operatorname{lnt}_{x} x & x-5 x \\
0 & -12+4-3 \lambda_{1}+\lambda_{2}
\end{array} x=2
$$

$$
\left.3 \lambda_{2}\right) \leqslant 0(\vec{\lambda}) \leqslant \begin{aligned}
& x \geqslant 08 \\
& g_{1}-3 \lambda_{1}+\lambda_{2}
\end{aligned}
$$

$$
\text { Similarly } s_{2}(\vec{\lambda}) \leqslant \lambda_{1}-3 \lambda_{2} \quad \text { Plan } x=-2
$$

$\quad \operatorname{Sin} \operatorname{lor} l_{j} S_{2}(\vec{\lambda}) \leq \lambda_{1}-3 \lambda_{2}$
$g(\hat{\lambda})=\min \left(g,(\hat{\lambda}), S_{2}(\vec{\lambda})\right)$ Som en ant hs to sha iv. Show that $g(\overrightarrow{0})=0$ and conclude that $d^{d^{2}}=0$. $\leqslant 0$ the thin is no $\vec{\lambda} \geqslant 0$
v. Does strong duality hold?

$$
p^{t}=2 \quad d^{*}=0 \quad \rightarrow \text { No strong duality }
$$

(b) Now, consider a problem equivalent to the minimization in (1):

$$
\begin{equation*}
p^{*}=\inf _{x \in \mathbb{R}} f_{0}(x) \tag{2}
\end{equation*}
$$

Observe that $p^{*}=2$ and the set of optimizers $x \in \mathcal{X}^{*}$ is $\mathcal{X}^{*}=\{-1,1\}$, since this problem is equivalent to the one in part (a).
i. Show that the dual problem can be represented as

$$
d^{*}=\sup _{\lambda \geq 0} g(\lambda)
$$

$$
\begin{aligned}
& \begin{array}{lllll}
\lambda_{1}=0 & \lambda_{2}=0 & g_{1}(\overline{0})=0 & \text { suet } \begin{array}{lll}
t_{1} t & g_{s}(\lambda)>0 \\
& g_{2}(\overline{0})=0
\end{array} \quad \text { so } g(\overline{0})=0 & \text { and } g_{2}(\lambda)>0
\end{array} \\
& g(\hat{0})=0 \quad+\bar{\lambda} \geqslant 0, g(\bar{\lambda}) \leqslant 0 \\
& \text { so } d^{*}=\underset{\vec{\lambda} \geqslant 0}{m-x} s(\hat{\lambda})=0
\end{aligned}
$$

$$
g(\lambda)=\min \left(g_{1}(\lambda), g_{2}(\lambda)\right)
$$

with

$$
\begin{gathered}
g_{1}(\lambda)=\inf _{x \geq 0} x^{3}-3 x^{2}+4+\lambda\left(x^{2}-1\right) \\
g_{2}(\lambda)=\inf _{x<0}-x^{3}-3 x^{2}+4+\lambda\left(x^{2}-1\right) . \\
\mathcal{L}(x, \lambda)=f_{0}(x)+\lambda\left(x^{2}-1\right) \\
g(\lambda)=\min _{x} \alpha(x, \lambda)=\min ^{\left(\operatorname{man}_{x} \geqslant 0<(x, \lambda), \min _{x<0} \alpha(x, \lambda)\right)} \\
\left.S(\lambda)=\min \left(\sin _{1}(\lambda),\right)_{2}(\lambda)\right)
\end{gathered}
$$

opt. pt. sich $\frac{\partial h}{\partial x}(\lambda, x)=0$ for λ f.xed differentisbe
or $x= \pm \infty \quad h(\pm 0, \lambda)=+\infty$

$$
\begin{gathered}
h(\pm 0, \lambda)=+\infty \\
3 x^{2}-6 x+4+2 \lambda x=0 \rightarrow \cdots x^{2}(x)
\end{gathered}
$$

iii. Conclude that $d^{*}=2$ and the optimal $\lambda=\frac{3}{2}$.

$$
g_{1}(\lambda)=h\left(x^{*}(\lambda), \lambda\right)
$$

$$
d^{*}=\operatorname{mov}_{\lambda \geqslant 0} \quad g(\lambda)
$$

$$
=g(\lambda)
$$

Cose st-dy: if $\lambda^{*} \geq 3 \quad \frac{d s}{\lambda \lambda}\left(\lambda^{\prime}\right)=0 \Rightarrow \lambda^{\prime} \ldots \operatorname{comprar}_{(+0)}^{c h}$
iv. Does strong duality hold? $\rightarrow s\left(\frac{3}{2}\right)=2=d^{*}$
$d^{*}=2 \quad p^{*}=2$ so strong deatily holds
MAG16
Duality if pb is not canvex defends on the wey to encode your facsible with conatrink

$$
\begin{aligned}
& x \in[-1,1] \text { as }-1 \leq x \leq 1 \text { No strong } d_{\text {uall }} \\
& x \in[-1,1] \text { as } x^{2} \leqslant 1 \text { strons } d \text { ality }
\end{aligned}
$$

$$
\begin{aligned}
& \text { if or } \lambda * \leqslant \\
& \frac{d s}{d \lambda}\left(\lambda^{\mu}\right), 0 \Rightarrow \lambda^{*} \ldots \quad \text { ompereit w.it } \\
& \text { g(0) }
\end{aligned}
$$

