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LECTURE 10

Linear Programs

Luckily the particular geometry
used in my thesis was the one
associated with the columns of the
matrix instead of its rows.

George Dantzig
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Half-spaces

For given a ∈ Rn and b ∈ R, the set H of points x ∈ Rn satisfying the linear
inequality

a>x ≤ b

is a closed half-space. Its boundary is the hyperplane defined by the equality
a>x = b.

vector a is normal to the boundary of the half-space and points outwards.

scalar b tells us where along a the boundary of the half-space sits.

When b = 0, the set H is the set of points forming an obtuse angle with a.

When b 6= 0, choose any x0 on the boundary of H, for example
x0 = (b/aTa)a; then H is the set of points such that x − x0 forming an
obtuse angle with a.
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Geometry

Figure: b = 0

Figure: b 6= 0
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Linear inequalities and polyhedra

For given a1, . . . , am ∈ Rn, and b ∈ Rm, the collection of m linear inequalities

a>i x ≤ bi , i = 1, . . . ,m,

defines a region in Rm which is the intersection of m half-spaces and it is named a
polyhedron.

Depending on the actual inequalities, these region can be unbounded, or bounded; in this
latter case it is called a polytope.
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Linear inequalities and polyhedra

It is often convenient to group several linear inequalities using matrix notation: we
define

A =


a>1
a>2
...
a>m

 , b =


b1

b2

...
bm

 ,

and then write inequalities in the equivalent matrix form (note: the inequality is
taken component-wise)

Ax ≤ b.
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Example: the probability simplex

The probability simplex is the polytope defined as

P = {x ∈ Rn : x ≥ 0,
n∑

i=1

xi = 1}.

The name suggests the fact that any x in the probability simplex has a natural
interpretation of a discrete probability distribution, i.e. the xi ’s are nonnegative and
they sum up to one.

The probability simplex in Rn has n vertices, which correspond to the standard
orthonormal basis vectors for Rn, that is

P = co{e(1), . . . , e(n)}.

0

1

1

1
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Example: the `1-norm ball

The `1-norm ball is the set {x ∈ Rn : ‖x‖1 ≤ 1}, that is the set where∑n
i=1 |xi | ≤ 1.

This set is indeed a polytope, since the previous inequality is equivalent to a
collection of 2n linear inequalities. To see this fact, consider sign variables
si ∈ {−1, 1}, i = 1, . . . , n. Then,

n∑
i=1

|xi | = max
si∈{−1,1}

n∑
i=1

sixi .

Therefore ‖x‖1 ≤ 1 if and only if maxsi∈{−1,1}
∑n

i=1 sixi ≤ 1, which is in turn
equivalent to requiring that

n∑
i=1

sixi ≤ 1, for all si ∈ {−1, 1}, i = 1, . . . ,m.
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The LP model

A linear optimization problem (or, linear program, LP) is one of standard form
where every function f0, f1, . . . , fm is affine. Thus, the feasible set of an LP is a
polyhedron.

Linear optimization problems admits several standard forms. E.g.,

p∗ = min
x

c>x + d

s.t.: Aeqx = beq

Ax ≤ b,

where the inequalities are understood componentwise; we shall denote this form as
the inequality form of the LP.

The constant term d in the objective function is, of course, immaterial: it offsets
the value of the objective but it has no influence on the minimizer.
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The LP model

Geometric interpretation

The set of points that satisfy the constraints of an LP (i.e., the feasible set) is a
polyhedron (or a polytope, when it is bounded):
X = {x ∈ Rn : Aeqx = beq, Ax ≤ b}.
Let xf ∈ X be a feasible point. To such point is associated the objective level c>xf
(from now on, we assume without loss of generality that d = 0).

A point xf ∈ X is an optimal point, hence a solution of our LP, if and only if there
is no other point x ∈ X with lower objective, that is:

xf ∈ X is optimal for LP ⇔ c>x ≥ c>xf , ∀y ∈ X .

Vice versa, the objective can be improved if one can find x ∈ X such that
c>(x − xf ) < 0.
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The LP model

Geometric interpretation

Geometrically, the latter condition means that ∃x in the intersection of the feasible
set X and the open half-space {x : c>(x − xf ) < 0}, i.e., that we can move away
from xf in a direction that forms a negative inner product with direction c (descent
direction), while maintaining feasibility. At an optimal point x∗ there is no feasible
descent direction,
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Example: a toy LP

min
x∈R2

3x1 + 1.5x2 subject to: − 1 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 3

The problem is an LP, and it can be put in standard inequality form:

min
x

: min
x∈R2

3x1 + 1.5x2 subject to: − x1 ≤ 1, x1 ≤ 2, −x2 ≤ 0, x2 ≤ 3

or, using matrix notation, minx c
>x subject to Ax ≤ b, with

c> = [3 1.5], A =


−1 0
1 0
0 −1
0 1

 , b =


1
2
0
3

 .

The level curves (curves of constant value) of the objective function are straight
lines orthogonal to the objective vector, c> = [3 1.5].
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Example: a toy LP

The problem amounts to find the smallest value of p such that p = c>x for some
feasible x .

The optimal point is x∗ = [−1 0]>, and the optimal objective value is p∗ = −3.
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Polyhedral functions

We say that a function f : Rn → R is polyhedral if its epigraph is a polyhedron,
that is if epi f =

{
(x , t) ∈ Rn+1 : f (x) ≤ t

}
can be represented as

epi f =

{
(x , t) ∈ Rn+1 : C

[
x
t

]
≤ d

}
,

for some matrix C ∈ Rm,n+1 and vector d ∈ Rm.

Polyhedral functions include in particular functions that can be expressed as a
maximum of a finite number of affine functions:

f (x) = max
i=1,...,m

a>i x + bi ,

where ai ∈ Rn, bi ∈ R, i = 1, . . . ,m.

The epigraph of f

epi f =

{
(x , t) ∈ Rn+1 : max

i=1,...,m
a>i x + bi ≤ t

}
can indeed be expressed as the polyhedron

epi f =
{

(x , t) ∈ Rn+1 : a>i x + bi ≤ t, i = 1, . . . ,m
}
.
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Polyhedral functions

The `∞-norm function f (x) = ‖x‖∞, x ∈ Rn, is polyhedral since it can be written
as the maximum of 2n affine functions:

f (x) = max
i=1,...,n

max(xi ,−xi ).

Polyhedral functions also include functions that can be expressed as

f (x) =

q∑
j=1

max
i=1,...,m

a>ij x + bij ,

Condition (x , t) ∈ epi f is equivalent to ∃u ∈ Rq such that

q∑
j=1

uj ≤ t, a>ij x + bij ≤ uj , i = 1, . . . ,m; j = 1, . . . , q

hence, epi f is the projection (on the space of (x , t)-variables) of a polyhedron,
which is itself a polyhedron.

The `1-norm function f (x) = ‖x‖1, x ∈ Rn, is polyhedral since it can be written as
the sum of maxima of affine functions: f (x) =

∑
i=1,...,n max(xi ,−xi ).
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Minimization of polyhedral functions

The problem of minimizing a polyhedral function, under linear equality or inequality
constraints, can be cast as an LP.

If f is polyhedral, then
min
x

f (x) s.t.: Ax ≤ b,

is cast as
min
x,t

t s.t.: Ax ≤ b, (x , t) ∈ epi f .

Since epi f is a polyhedron, it can be expressed as in (15), hence the problem
above is an LP.

Notice however that explicit representation of the LP in a standard form may
require introduction of additional slack variables, which are needed for
representation of the epigraph.
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`∞ regression problems

min
x
‖Ax − b‖∞, A ∈ Rm,n, b ∈ Rm.

The problem may be first rewritten in epigraphic form, adding a slack scalar
variable t

min
x,t

t s.t.: ‖Ax − b‖∞ ≤ t

Then we observe that

‖Ax − b‖∞ ≤ t ⇔ max
i=1,...,m

|a>i x − bi | ≤ t ⇔ |a>i x − bi | ≤ t, i = 1, . . . ,m.

Hence, problem is equivalent to the following LP in variables x ∈ Rn and t ∈ R:

min
x,t

t

s.t.: a>i x − bi ≤ t, i = 1, . . . ,m

a>i x − bi ≥ −t, i = 1, . . . ,m.
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`1 regression problems

min
x
‖Ax − b‖1, A ∈ Rm,n, b ∈ Rm.

Equivalent to a problem with a vector u of additional slack variables u ∈ Rm:

min
x,u

m∑
i=1

ui s.t.: |a>i x − bi | ≤ ui , i = 1, . . . ,m,

This is in turn easily cast as a standard LP as follows

min
x,u

1>u

s.t.: a>i x − bi ≤ ui , i = 1, . . . ,m

a>i x − bi ≥ −ui , i = 1, . . . ,m.
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Drug production problem

A company produces two kinds of drugs, DrugI and DrugII, containing a specific
active agent A, which is extracted from raw materials purchased on the market.

There are two kinds of raw materials, RawI and RawII, which can be used as
sources of the active agent. The related production, cost and resource data are
given next. The goal is to find the production plan which maximizes the profit of
the company.
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Problem data

DrugI DrugII

Selling price, $ per 1000 packs 5,500 6,100
Content of agent A, g per 1000 packs 0.500 0.600

Manpower required, hours per 1000 packs 90.0 100.0
Equipment required, hours per 1000 packs 40.0 50.0

Purchasing price
($ per kg)

Content of agent A
(g per kg)

RawI 100.00 0.01
RawII 199.90 0.02

Budget ($)
Manpower

(hours)
Equipment

(hours)
Capacity of raw

materials’ storage (kg)

100,000 2,000 800 1,000
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LP model: variables, objective, constraints

Variables: denote by xrmDrugI , xrmDrugII the amounts (in 1000 of packs) of
Drug I and II produced, while xrmRawI , xrmRawII denote the amounts (in kg) of
raw materials to be purchased.

Objective function: f0(x) = fcosts(x)− fincome(x), where

fcosts(x) = 100xRawI + 199.90xRawII + 700xDrugI + 800xDrugII

represents the purchasing and operational costs, and

fincome(x) = 5, 500xDrugI + 6100xDrugII

contain the unit market prices as coefficients.

Balance of active agent: says that the amount of raw material must be
enough to produce the drugs

0.01xRawI + 0.02xRawII − 0.50xDrugI − 0.60xDrugII ≥ 0.
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LP model: more constraints & full model

Storage: xRawI + xRawII ≤ 1000.

Manpower: 90.0xDrugI + 100.0xDrugII ≤ 2000

Equipment: 40.0xDrugI + 50.0xDrugII ≤ 800.

Budget: 100.0RawI + 199.90xRawII + 700xDrugI + 800xDrugII ≤ 100, 000.

Sign constraints: all variables are non-negative.

Putting this together we get the LP:

min c>x : Ax ≤ b, x ≥ 0,

where x = (xRawI, xRawII, xDrugI, xDrugII), and

A =


−0.01 −0.02 0.500 0.600

1 1 0 0
0 0 90.0 100.0
0 0 40.0 50.0

100.0 199.9 700 800

 , b =


0

1000
2000
800

100000

 , c =


100

199.9
−5500
−6100

 .
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Examples
Cash-flow management

A company needs to choose between three
financial instruments to cover its liabilities
over a six-months period into the future:

A line of credit of maximum amount
$100k, with interest rate 1% per
month;

In any of the first 3 months it can issue
90-day commercial paper (a type of
unsecured debt) bearing a total
interest of 2% for the 3-month period;

Excess funds (cash) can be invested at
0.3% per month.
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Examples
Cash-flow management: variables and decision problem

Variables:

Balance on the credit line xi for month i = 1, 2, 3, 4, 5.

Amount yi of commercial paper issued (i = 1, 2, 3).

Excess funds zi for month i = 1, 2, 3, 4, 5.

z6, the company’s wealth at the end of the 6-month period.

With these variables we have to meet certain cash-flow requirements each month.

Decision problem:

maximize z6 subject to

{
Bounds on variables,
Cash-flow balance equations.
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Examples
Cash-flow management: optimization model

max
x,y,z

z6

s.t. x1 + y1 − z1 = 150,
x2 + y2 − 1.01x1 + 1.003z1 − z2 = 100,
x3 + y3 − 1.01x2 + 1.003z2 − z3 = −200,

x4 − 1.02y1 − 1.01x3 + 1.003z3 − z4 = 200,
x5 − 1.02y2 − 1.01x4 + 1.003z4 − z5 = −50,
−1.02y3 − 1.01x5 + 1.003z5 − z6 = −300,

0 ≤ x ≤ 100, y ≥ 0, z ≥ 0

The right-hand side contains the liabilities that must be met.

Challenges:

Future liabilities are uncertain.

Some instruments may have varying (thus, uncertain) interest rates.
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Example
Network flows1

We consider a network (directed graph) having m nodes connected by n directed
arcs (ordered pairs (i , j)). We assume there is at most one arc from any node i to
any node j , and no self-loops.

We define the arc-node incidence matrix A ∈ Rm,n to be the matrix with
coefficients

Aij =

 1 if arc j starts at node i ,
−1 if it ends at node i ,
0 otherwise.

Note that the column sums of A are zero: 1>A = 0.

1
Thanks to L. Vandenberghe for his slides, at http://www.seas.ucla.edu/~vandenbe/ee236a/lectures/networks.pdf
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Incidence matrix example

The figure shows the graph associated with the arc-node incidence matrix

A =


1 1 0 0 0 0 0 −1
−1 0 1 0 0 0 0 1
0 −1 −1 −1 1 1 0 0
0 0 0 1 0 0 −1 0
0 0 0 0 0 −1 1 0
0 0 0 0 −1 0 0 0

 .
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Flows and balance equations

A flow (of traffic, information, charge) is represented by a vector xinRn, and the
total flow leaving node i is then the vector with components

(Ax)i =
n∑

j=1

Aijxj , i = 1, . . . ,m.
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Supply vector

Define a supply vector b ∈ Rm, with possibly positive or negative components,
representing supply and demand. We assume that 1Tb = 0, so that the total
supply equals the total demand.

The condition Ax = b expresses the balance equations of the network.
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Example: traffic equations2

The traffic balance equations are Ax = b, with

A =


−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1

 , b =


−160
240
−600
520

 .

2See http://livebooklabs.com/keeppies/c5a5868ce26b8125/ac283f2cc94c29f3
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Minimum cost network flow problem

We also define a cost vector c ∈ Rn, containing the unit cost of traversing each
edge, so that the total cost of a flow x is

c>x .

The minimum cost network flow problem has the LP form

min
x

: cT x : Ax = b, l ≤ x ≤ u,

where l ≤ u are two vectors that provide upper and lower bounds on the flow.
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Maximum flow problem3

In the maximum flow problem, we seek to maximize the flow between node 1 (the
source) and node m (the sink):

min
x,t

: t : Ax = te, l ≤ x ≤ u,

with eT = (1, 0, . . . , 0,−1).

Both problems can be solved at scale with dedicated algorithms.

3
See also: http://www.mathcs.emory.edu/~cheung/Courses/323/Syllabus/NetFlow/max-flow-lp.html.
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Example
Swimming coach’s problem4

The coach of a swim team needs to assign swimmers to a 200-yard medley relay
team to compete in a tournament. The problem is that his best swimmers are
good in more than one stroke, so its not clear which swimmer to assign to which
stroke. Here are the best times for each swimmer:

Stroke Carl Chris David Tony Ken
Backstroke 37.7 32.9 33.8 37.0 35.4

Breaststroke 43.4 33.1 42.2 34.7 41.8
Butterfly 33.3 28.5 38.9 30.4 33.6
Freestyle 29.2 26.4 29.6 28.5 31.1

Table: 4× 5 matrix of best times for every stroke and swimmer.

4From B. Van Roy, K. Mason
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Assignment problem

Variable is X ∈ R4×5

min
X≥0

traceM>X : X1 ≤ 1 (at most one swimmer per stroke)
X>1 = 1 (one stroke per swimmer)

Solving the LP above, we actually get an integer solution:

X =


0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0

 .

(It can be proven that integral solutions always exist for such LPs; we don’t have
to consider fractional swimmers . . . )

Fa18 35 / 35


	Linear programs
	Half-spaces
	Linear inequalities and polyhedra
	The LP model
	Polyhedral functions

	Examples
	 and 1 regression problems
	Drug production problem
	Cash-flow management
	Network flows


