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LECTURE 11

Convex Quadratic Programs

We next consider the rule that the
investor does (or should) consider
expected return a desirable thing
and variance of return an
undesirable thing.

Harry Markowitz
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Linear and quadratic functions

A quadratic function in a vector of variables x = [x1 x2 · · · xn] can be written
generically as

f0(x) =
1

2
x>Hx + c>x + d (a quadratic function)

where d ∈ R, c ∈ Rn, and H ∈ Rn,n is a symmetric matrix.

A linear function is of course a special case of a quadratic function, obtained
considering H = 0:

f0(x) = c>x + d (a linear function).

Note: if H is not symmetric, we can always replace it by its symmetric part:

∀ x ∈ Rn : x>Hx = x>H̃x , H̃
.

=
1

2
(H + H>).
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Convex quadratic functions

A quadratic function is said to be convex if its Hessian is positive semi-definite,
that is: every eigenvalue of the (symmetric) matrix H is non-negative.

Figure: A convex quadratic function. Figure: A non-convex quadratic function.
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The QP model

Let A ∈ Rm×n, b ∈ Rm. The model

minimize f0(x)

subject to: Ax ≤ b, Cx = d ,

with A, b,C , d matrices of appropriate size, is called a quadratic program (QP for
short) if f0 is a convex quadratic function, that is:

f0(x) =
1

2
x>Hx + c>x ,

where H = H> is positive semi-definite (PSD). Note that the model includes
equality constraints as a special case.

Warning about nomenclature: The function f0 is still a quadratic function if H is
not PSD; yet the problem above would not then be called a QP, but a
“non-convex QP”. Such problems can be very hard to solve, and are outside the
scope of this class.
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Unconstrained minimization of linear functions

Consider first the linear case, f0(x) = c>x + d :

p∗ = min
x∈Rn

c>x + d .

It is an intuitive fact that p∗ = −∞ (i.e., the objective is unbounded below)
whenever c 6= 0, and p∗ = d , otherwise.

Indeed, for c 6= 0 one may take x = −αc, for any α > 0 large at will, and drive f0
to −∞. For c = 0 the function is actually constant and equal to d .

We have therefore, for a linear function:

p∗ =

{
d if c = 0
−∞ otherwise.
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Unconstrained minimization of convex quadratic functions

Consider the convex quadratic function

p∗ = min
x∈Rn

f (x)
.

=
1

2
x>Hx + c>x + d .

If H � 0 (that is, H is positive-definite), we can write

f (x) =
1

2
(x − x0)>H(x − x0) + α ≥ α,

where x0
.

= −H−1c, α
.

= d − x>0 Hx0. The (unique) minimizer is thus x∗ = x0.

If H � 0 is only positive semi-definite, and c ∈ R(H), then any x0 such that
Hx0 + c = 0 is optimal, by the same argument as before. The set of solutions is
given by {

−H†c + ζ, ζ ∈ N (H)
}
.

If H � 0 is only positive semi-definite, and c 6∈ R(H), the function is unbounded
below: by the fundamental theorem of linear algebra, we can always write c as
c = −Hx0 + r , for some x0, r 6= 0 ∈ Rn with Hr = 0. Now set x(t) = x0 − tr , with
t ∈ R, and observe that f (x(t)) = cst.− t(r>r)→ −∞ as t → +∞.
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Example: least-squares

We have already encountered a special case of the QP model, in the context of the
least-squares approximate solution of linear equations.

Indeed, the LS problem amounts to minimizing f0(x) = ‖Ax − y‖2
2, hence

f0(x) = (Ax − y)>(Ax − y) = x>A>Ax − 2y>Ax + y>y ,

which is a quadratic function in the standard form, with

H = 2(A>A), c = −2A>y , d = y>y .

Note that f0 is convex, since A>A � 0.

Since the problem is not constrained, and c = −HA†y ∈ R(H), we obtain that the
set of solutions is of the form

X opt =
{
x∗ = A†y + Nz : z ∈ Rr

}
,

where r is the rank of H (hence, the column rank of A), and N spans the nullspace
of A.

If A is full column rank, then A>A � 0; the solution is unique and it is given by the
well-known formula

x∗ = −H−1c = (A>A)−1A>y .
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Quadratic minimization under linear equality constraints

The linear equality-constrained problem

minimize f0(x)

subject to: Ax = b,

with f0(x) = 1
2
x>Hx + c>x + d , can be readily converted into unconstrained form

by eliminating the equality constraints.

Parameterize all x such that Ax = b as x = x̄ + Nz , where x̄ is one specific solution
of Ax = b, N is a matrix containing by columns a basis for the nullspace of A, and
z is a vector of free variables.

Then, we substitute x in f0 and obtain a problem which is unconstrained in the
variable z :

min
z
ϕ0(z) =

1

2
z>H̄z + c̄>z + d̄ ,

where

H̄ = N>HN, c̄ = N>(c + Hx̄), d̄ = d + c>x̄ +
1

2
x̄>Hx̄ .
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Example
Control of dynamical systems

Many dynamic phenomena, such as mechanical or robotic systems, or population
dynamics, can be accurately modelled by a system of first-order difference
equations of the form

x(t + 1) = Ax(t) + Bu(t), t = 0, 1, 2, 3, . . . , (1)

where x(t) represents the “state” of the system (say, altitude and orientation of a
flying object, or the amount of people in different age brackets) at time t, and
u(t) ∈ Rp is an external input.

Given the state of the system at an initial time t0, and given the input u(t) for
t ≥ t0, it can be readily verified by recursive application of the above equation
that we have

x(t) = At−t0x(t0) +
t−1∑
i=t0

At−i−1Bu(i), t ≥ t0. (2)
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Linear-quadratic control (LQR)

We wish to come up with an algorithmic way to generate a sequence of inputs so
as to achieve a desired target state xd ∈ Rn at some later time T > t0.

In the Linear-Quadratic Regulator (LQR) approach, the problem is posed as

min
(x(t))Tt=t0

, (u(t))Tt=t0

‖x(T )− xd‖2
2 +

T∑
t=t0

‖u(t)‖2
2

s.t. x(t) = At−t0x(t0) +
t−1∑
i=t0

At−i−1Bu(i), t = t0, . . . ,T .

The above is a QP. It can be shown that the optimal u can be written as a linear
function of the state x , hence the term “linear-quadratic”.
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Example
Tracking a financial index

Consider a financial portfolio design problem, where the entries of x ∈ Rn represent
the fractions of an investor’s total wealth invested in each of n different assets, and
where r(k) ∈ Rn represents the vector of simple returns of the component assets
during the k-th period of time [(k − 1)∆, k∆], where ∆ is a fixed duration, e.g.,
one month.

Suppose that the components yk of vector y ∈ RT represents the return of some
target financial index over the k-th period, for k = 1, . . . ,T .

the so-called index tracking problem is to construct a portfolio x so to track as
close as possible the “benchmark” index returns y .

Since the vector of portfolio returns over the considered time horizon is

z = Rx , R
.

=

 r>(1)
...

r>(T )

 ∈ RT ,n

we may seek for the portfolio x with minimum LS tracking error, by minimizing
‖Rx − y‖2

2.

Fa18 13 / 30



Tracking a financial index

Elements of x represent relative weights, that is they are nonnegative and they sum
up to one. The index tracking problem is therefore a constrained LS problem, thus
a convex QP:

p∗ = min
x

‖Rx − y‖2
2

s.t.: 1>x = 1, x ≥ 0.

169 monthly return data of six indices: the MSCI US index, the MSCI EUR index,
the MSCI JAP index, the MSCI PACIFIC index, the MSCI BOT liquidity index, and
the MSCI WORLD index.

The problem is to track the target index MSCI WORLD, using a portfolio
composed by the other five indices.

Solving the convex QP with this data, we obtain the optimal portfolio composition
x∗ = [0.5138 0.3077 0.0985 0.0374 0.0426]>, and hence the optimal-tracking
portfolio return sequence z∗ = Rx∗, with tracking error
‖Rx∗ − y‖2

2 = 2.6102× 10−4.

Fa18 14 / 30



Tracking a financial index

The figure below shows the result of investing one Euro into each of the component
indices and benchmark index (solid line), and into the tracking-optimal portfolio. As
expected, the value sequence generated by the optimal portfolio (dashed) is the closest
one to the target index.
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Problems involving cardinality and their `1 relaxations

Many engineering applications require the determination of solutions that are
sparse, that is possess only few nonzero entries (low-cardinality solutions).

The quest for low-cardinality solutions often has a natural justification in terms of
the general principle of parsimony of the ensuing design.

However, finding minimum cardinality solutions (i.e., solutions with small `0 norm)
is hard in general, from a computational point of view.

For this reason, several heuristics are often used in order to devise tractable
numerical schemes that provide low (albeit possibly not minimal) cardinality
solutions. One of these schemes involves replacing the `0 norm with the `1 norm.
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Problems involving cardinality and their `1 relaxations

An interesting relation between the `1 norm of x ∈ Rn and its cardinality is obtained
via the Cauchy-Schwartz inequality applied to the inner product of |x | and nz (x),
where |x | is the vector whose entries are the absolute values of x , and nz (x) is the
vector whose i-th entry is one whenever xi 6= 0, and its is zero otherwise.

For all x ∈ Rn,

‖x‖1 = nz (x)>|x | ≤ ‖nz (x)‖2 · ‖x‖2 = ‖x‖2

√
card (x),

hence
card (x) ≤ k ⇒ ‖x‖2

1 ≤ k‖x‖2
2.

Also, for all x ∈ Rn,

‖x‖1 = nz (x)>|x | ≤ nz (x)>1 · ‖x‖∞ = ‖x‖∞card (x),

hence
card (x) ≤ k ⇒ ‖x‖1 ≤ k‖x‖∞.
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Piece-wise constant fitting

Suppose one observes a noisy time-series which is almost piece-wise constant. The
goal in piece-wise constant fitting is to find what the constant levels are. In
biological or medical applications, such levels might have interpretations of “states”
of the system under observation.

Let x ∈ Rn denote the signal vector (which is unknown) and let y ∈ Rn denote the
vector of noisy signal observations (i.e., y is true signal x , plus noise).

Given y , we seek an estimate x̂ of the original signal x , such that x̂ has as few
changes in consecutive time steps as possible.

We model the latter requirement by minimizing the cardinality of the difference
vector Dx̂ , where D ∈ Rn−1,n is the difference matrix

D =


−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .

0 · · · 0 −1 1

 ,
so that Dx̂ = [x̂2 − x̂1, x̂3 − x̂2, . . . , x̂n − x̂n−1]>.
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Piece-wise constant fitting

We are thus led to the problem

p∗
.

= min
x̂

f (x̂)
.

= ‖y − x̂‖2
2 s.t.: card (Dx̂) ≤ k,

where k is an estimate on the number of jumps in the signal. Here, the objective
function in the problem is a measure of the error between the noisy measurement
and its estimate x̂ .

We can get a lower bound on the problem by noting that at optimum, we must
have ‖x̂ − y‖2

2 ≤ f (0) = ‖y‖2
2, hence ‖x̂‖2 ≤ 2‖y‖2; the constraint thus implies that

‖x̂‖1 ≤ α
.

= 2
√
k‖y‖2. The relaxed problem is a QP, of the form

min
x̂
‖y − x̂‖2

2 s.t.: ‖Dx̂‖1 ≤ α.

Alternatively, one may cast a problem with a weighted objective:

min
x̂
‖y − x̂‖2

2 + γ‖Dx̂‖1,

for some suitable trade-off parameter γ ≥ 0.
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Piece-wise constant fitting

Example of signal reconstruction via piece-wise fitting.

The top panel shows the unknown signal x (dashed) and its available noisy
measurement y ; the center panel shows the unknown signal x (dashed) and its
reconstruction

x̂ obtained via the `1 heuristic; the bottom panel shows the unknown signal x
(dashed) and its reconstruction x̂ obtained by solving a regularization problem
where the `2 norm is used instead of the `1 norm in the constraint.

We notice that the `1 heuristic is successful in eliminating the noise from the signal,
while preserving sharp transitions in the phase (level) changes in the signal.

With an `2 heuristic, noise elimination only comes at the price of sluggish phase
transitions.
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Piece-wise constant fitting
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`1 regularization and the LASSO

Regularized LS problems, with an `2 regularization term, have been discussed in
Lecture 5.

An important variation arises when the regularization term involves the `1 norm of
x , instead of the `2 norm. This results in the following problem, known as the basis
pursuit denoising problem (BPDN), or as the least absolute shrinkage and selection
operator (LASSO) problem:

min
x∈Rn

‖Ax − y‖2
2 + λ‖x‖1, λ ≥ 0, (3)

where ‖x‖1 = |x1|+ · · ·+ |xn|.
Problem (3) received enormous attention in recent years from the scientific
community, due to its relevance in the field of compressed sensing (CS).

The basic idea is that the `1 norm of x is used as a proxy for the cardinality of x
(the number of nonzero entries in x).

It formalizes a tradeoff between the accuracy with which Ax approximates y , and
the complexity of the solution, intended as the number of nonzero entries in x . The
larger λ is, the more problem (3) is biased towards finding low-complexity solutions,
i.e., solutions with many zeros.
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`1 regularization and the LASSO

Problem (3) can be cast in the form of a standard QP by introducing slack
variables u ∈ Rn:

min
x,u∈Rn

‖Ax − y‖2
2 + λ

n∑
i=1

ui

s.t.: |xi | ≤ ui , i = 1, . . . , n.

Typical applications where LASSO-type problems arise may involve a very large
number of variables, hence several specialized algorithms have been developed to
solve `1-regularized problems with maximal efficiency.
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Image compression in a wavelet basis

A gray-scale image, represented by a vector y ∈ Rm, typically admits an essentially
sparse representation, in a suitable basis:

This means that, for appropriate dictionary matrix A ∈ Rm,n, the image y can be
well approximated by a linear combination Ax of the feature vectors, where the
coefficients x of the combination are sparse.

Usual dictionary matrices employed in image analysis include Discrete Fourier
Transform (DFT) bases, and wavelet (WT) bases. Wavelet bases, in particular,
have been recognized to be quite effective in providing sparse representations of
standard images (they are used, for instance in the Jpeg2000 compression protocol).

Consider, for example, the 256× 256 gray-scale image shown next. Each pixel in
this image is represented by an integer value yi in the range [0, 255], where the 0
level is for black, and 255 is for white.
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Image compression in a wavelet basis

Original image, and histogram of y : non sparse!
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Image compression in a wavelet basis

However, if we consider the image representation in the wavelet transform domain
(which implicitly amounts to considering a suitable dictionary matrix A containing
by columns the wavelet bases), we obtain a vector representation ỹ whose absolute
value has the following histogram. For this example, we are using a Daubechies
orthogonal wavelet transform, hence A is a 65536× 65536 orthogonal matrix.
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Image compression in a wavelet basis

The wavelet representation ỹ of the image contains very few large coefficients,
while most of the coefficient are relatively small (however, ỹ is not yet sparse, since
its elements are not exactly zero).

If all these small coefficients are retained, then ỹ carries the same information as y ,
that is, it is a lossless encoding of the original image, in the wavelet domain:
y = Aỹ .

However, if we allow for this equality to be relaxed to approximate equality y ' Ax ,
we may tradeoff some accuracy in change of a representation x in the wavelet
domain which has many zero coefficients, i.e., a sparse representation.

Such a sparse tradeoff can typically be obtained by solving the LASSO problem (3)
for suitable λ, that is minx

1
2
‖Ax − y‖2

2 + λ‖x‖1.
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Image compression in a wavelet basis

In our specific situation, since A is orthogonal, we have that the above problem is
equivalent to

min
x

1

2
‖x − ỹ‖2

2 + λ‖x‖1,

where ỹ
.

= A>y is the image representation in the wavelet domain.

This problem is separable, i.e., it can be reduced to a series of univariate
minimization problems, since

1

2
‖x − ỹ‖2

2 + λ‖x‖1 =
m∑
i=1

1

2
(xi − ỹi )

2 + λ|xi |.

Moreover, each of the single-variable problems

min
xi

1

2
(xi − ỹi )

2 + λ|xi |

admits a simple closed-form solution as

x∗i =

{
0 if |ỹi | ≤ λ
ỹi − λsgn(ỹi ) otherwise.
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Image compression in a wavelet basis

All coefficients ỹi in the wavelet basis are thresholded to zero if their modulus is
smaller than λ, and are offset by λ, otherwise (soft thresholding).

Once we computed x∗, we can reconstruct an actual image in the standard domain,
by computing the inverse wavelet transform (i.e., ideally, we construct the product
Ax∗).

Solving the LASSO problem with λ = 30 we obtained a representation x∗ in the
wavelet domain that has only 4540 nonzero coefficients (against the 65536 nonzero
coefficients present in ỹ or in y). We have therefore a compression factor of about
7%, meaning that the size of the compressed image is only 7% of the size of the
original image.

Reducing the regularization parameter to λ = 10, we obtained instead a
representation x∗ in the wavelet domain with 11431 nonzero coefficients, and thus
a compression factor of about 17%
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Image compression in a wavelet basis

Comparison of original boat image (a), wavelet compression with λ = 10 (b), and
wavelet compression with λ = 30 (c).
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