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LECTURE 13

Robust Optimization Models

The future is uncertain . . . but this
uncertainty is at the very heart of
human creativity.

Ilya Prigogine
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Curse of uncertainty

“Nominal” optimization problem:

min
x

f0(x) : fi (x) ≤ 0, i = 1, . . . ,m.

In practice, problem data is uncertain:

Estimation errors affect problem parameters.

Implementation errors affect the decision taken.

Uncertainties often lead to highly unstable solutions, or much degraded realized
performance.

These problems are compounded in problems with multiple decision periods.
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Example

In this example arising in antenna array design, the problem is to approximate a “target”
function (in blue) with a linear combination of given “profiles” (functions not shown).

Figure: Antenna design: nominal, perturbed nominal, robust

The nominal solution, when implemented with a .01% relative error, gives a very bad
result. A robust approach sacrifices a bit of performance, but completely removes this
high sensitivity issue.
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Robust counterpart

“Nominal” optimization problem:

min
x

f0(x) : fi (x) ≤ 0, i = 1, . . . ,m.

Robust counterpart:

min
x

max
u∈U

f0(x , u) : ∀ u ∈ U , fi (x , u) ≤ 0, i = 1, . . . ,m

functions fi now depend on a second variable u, the “uncertainty”, which is
constrained to lie in given set U .

Inherits convexity from nominal. Very tractable in some practically relevant
cases.

Complexity is high in general, but there are systematic ways to get
relaxations.
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Robust LP

Nominal problem:
min
x

c>x : a>i x ≤ bi , i = 1, . . . ,m.

Now assume that ai is only known to belong to a given set Ui ⊆ Rn.

Robust counterpart:

min
x

c>x : ∀ai ∈ Ui , a>i x ≤ bi , i = 1, . . . ,m.
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Robust LP
Uncertainty in the cost vector

Nominal problem:
min
x

c>x : a>i x ≤ bi , i = 1, . . . ,m.

Now assume that the cost vector c is only known to belong to a given set U ⊆ Rn.

Robust counterpart:

min
x

max
c∈U

c>x : a>i x ≤ bi , i = 1, . . . ,m.

We can extend the robust approach to cases with uncertainties affecting both
cost vectors, coefficient matrix, and right-hand side vector b.

Solution may be hard in general, but becomes easy for special uncertainty
sets. We examine these special cases now.
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A single inequality with uncertain coefficient vector

Next we examine the robust counterpart to a single inequality constraint:

∀ a ∈ U , a>x ≤ b

where U takes the following forms:

scenario uncertainty: U is a finite set of ‘’‘scenarios”;

U is a sphere, or more generally an ellipsoid;

U is a box.

The above constraint can be written

b ≥ max
a∈U

aT x .
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Robust single inequality
Scenario uncertainty

The scenario uncertainty model assumes that the coefficient vector a is only
known to lie in a finite set in Rn:

U =
{
a(1), . . . , a(K)

}
,

with a(k) ∈ Rn a “scenario”, k = 1, . . . ,K . We have

max
a∈U

a>x = max
1≤k≤K

(a(k))>x .

When U is a finite set of three scenarios,
the set {

x : a>x ≤ b : ∀ a ∈ U
}

is a polyhedron made up of three
half-spaces.
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Robust single inequality
Box uncertainty

The box uncertainty model assumes that the coefficient vector ai is only known to
lie in a “box” (a hyper-rectangle in Rn). In its simplest case, this uncertainty
model has the form:

U = {a : ‖a− â‖∞ ≤ ρ} = {a + ρu : ‖u‖∞ ≤ 1} ,
where ρ ≥ 0 is a measure of the size of the uncertainty, and â is the nominal value
of the coefficient vector. We have

max
a∈U

a>x = â>x + ρ ·
(

max
u : ‖u‖∞≤1

u>x

)
= â>x + ρ‖x‖1.

When U is a box, the set{
x : aT x ≤ b : ∀ a ∈ U

}
is a polyhedron, with 2n vertices.
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Robust single inequality
Spherical uncertainty

The spherical uncertainty model assumes that the coefficient vector ai is only
known to lie in a sphere. This uncertainty model has the form:

U = {a : ‖a− â‖2 ≤ ρ} = {a + ρu : ‖u‖2 ≤ 1} .,

where ρ ≥ 0 is a measure of the size of the uncertainty, and â is the nominal value
of the coefficient vector. We have

max
a∈U

a>x = â>x + ρ ·
(

max
u : ‖u‖2≤1

u>x

)
= â>x + ρ‖x‖2.

When U is a sphere, the set{
x : aT x ≤ b : ∀ a ∈ U

}
is defined by a single SOCP constraint.
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Robust single inequality
Ellipsoidal uncertainty

The ellipsoidal uncertainty model assumes that the coefficient vector a is only
known to lie in a ellipse in Rn.

This uncertainty model has the following form:

U =
{
a : (a− â)>P−1(a− â) ≤ 1

}
,

where â represents the nominal value of the coefficient vector, and matrix
P = P> � 0 determines the shape and size of the ellipse. Since P � 0, we can
write P = R>R for some matrix R. Then

U = {a = â + Ru : ‖u‖2 ≤ 1} ,

and
max
a∈U

a>x = â>x + max
u : ‖u‖2≤1

(Ru)>x = â>x + ‖R>x‖2.
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Robust LP with box uncertainty

The robust LP with box uncertainty:

min
x

c>x

s.t.: ∀ ai ∈ Bi : a>i x ≤ bi i = 1, . . . ,m,

where Bi = {âi + ρiu : ‖u‖∞ ≤ 1}, i = 1, . . . ,m, is

min
x

c>x

s.t.: â>i x + ρi‖x‖1 ≤ bi i = 1, . . . ,m.

This problem can in turn be expressed in standard LP form as

min
x,u

c>x

s.t.: â>i x + ρi
∑n

j=1 uj ≤ bi , i = 1, . . . ,m,

−uj ≤ xj ≤ ui , j = 1, . . . , n.
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Robust LP with box uncertainty
Geometry

In this example with box uncertainty, the
robust counterpart’s feasible set is inside
the nominal feasible set, and has
polyhedral boundaries; the robust
problem is still an LP.
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Robust LP with ellipsoidal uncertainty

The robust LP with ellipsoidal uncertainty:

min
x

c>x

s.t.: ∀ ai ∈ Ei : a>i x ≤ bi i = 1, . . . ,m,

where Ei = {âi + Riu : ‖u‖2 ≤ 1}, i = 1, . . . ,m, is the SOCP

min
x

c>x

s.t.: â>i x + ‖R>i x‖2 ≤ bi i = 1, . . . ,m.
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Robust LP with spherical uncertainty
Geometry

With spherical uncertainty, the robust
counterpart’s feasible set is inside the
nominal feasible set, and has smooth
boundaries, making the solution unique.

The nominal LP has many optimal points (red line), which means a solution
might be very sensitive to data changes (such as if we change the direction of the
objective slightly). In constrast, the solution to the robust LP is unique (red dot),
irrespective of the choice of the objective. As a result, it not very sensitive to
changes in the objective or other problem data.
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Example
Drug production problem

Recall the drug production problem from lecture 10. The balance equation reads

0.01xRawI + 0.02xRawII − 0.05xDrugI − 0.600xDrugII = a>x ≥ 0,

where a1 = 0.01, a2 = 0.02 contain the content of agent A (per kg) in each raw
material, and a3, a4 contain the content of agent A in each of the drugs.

Uncertainty model: amount of active agent in raw material is uncertain:

a1 ∈ [0.00995, 0.01005], a2 ∈ [0.0196, 0.0204],

representing a 0.5% and 2% box uncertainty around the nominal values.
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Behavior of nominal and robust solutions

If we disregard uncertainty in raw material’s quality, and solve the nominal
model, we obtain xRawI = 0, xRawII = 438.79, xDrugI = 17, 552, xDrugII = 0,
and profit p∗ = $8819.66.

If the parameter for RawII takes the worst-case value, the nominal solution is
not feasible. Decreasing xRawII to make the constraint feasible again, leads
to a 21% reduction in profit.

Solving the robust counterpart instead, we get xRawI = 877.73, xRawII = 0,
xDrugI = 17, 467, xDrugII = 0, and profit p∗ = $8294.56. Profit is reduced by
5.95% only.
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Chance-constrained LP

Chance-constrained linear programs arise naturally from standard LPs, when some
of the data describing the linear inequalities is uncertain and random.

Consider an LP in standard inequality form:

min
x

c>x

s.t.: a>i x ≤ bi , i = 1, . . . ,m.

Suppose that the problem data vectors ai , i = 1, . . . ,m, are not known precisely.
Rather, all is known is that ai are random vectors, with normal (Gaussian)
distribution with mean value E{ai} = āi and covariance matrix var{ai} = Σi � 0.

In such a case, also the scalar a>i x is a random variable; precisely, it is a normal
random variable with

E{a>i x} = ā>i x , var{a>i x} = x>Σix .
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Chance-constrained LP

It makes no sense to impose a constraint of the form a>i x ≤ bi , since the left-hand
side of this expression is a normal random variable, which can assume any value, so
such a constraint would always be violated by some outcomes of the random data
ai .

We ask that the constraint a>i x ≤ bi be satisfied up to a given level of probability
pi ∈ (0, 1).

This level is chosen a priori by the user, and represents the probabilistic reliability
level at which the constraint will remain satisfied in spite of random fluctuations in
the data.

The probability-constrained (or chance-constrained) counterpart of the nominal LP
is therefore

min
x

c>x (1)

s.t.: Prob{a>i x ≤ bi} ≥ pi , i = 1, . . . ,m, (2)

where pi are the assigned reliability levels.
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Chance-constrained LP

Proposition 1

Consider problem (1)–(2), under the assumptions that pi > 0.5, i = 1, . . . ,m, and that
ai , i = 1, . . . ,m, are independent normal random vectors with expected values āi and
covariance matrices Σi � 0. Then, (1)–(2) is equivalent to the SOCP

min
x

c>x

s.t.: ā>i x ≤ bi − Φ−1(pi )‖Σ1/2
i x‖2, i = 1, . . . ,m, (3)

where Φ−1(p) is the inverse cumulative probability distribution of a standard normal
variable.
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Chance-constrained LP

Proof.

We start by observing that

a>i x ≤ bi ⇔ a>i x − ā>i x√
x>Σix

≤ bi − ā>i x√
x>Σix

,

where
σi (x) =

√
x>Σix = ‖Σ1/2

i x‖2.

Defining

zi (x)
.

=
a>i x − ā>i x

σi (x)
, (4)

τi (x)
.

=
bi − ā>i x

σi (x)
, (5)

we have that
Prob{a>i x ≤ bi} = Prob{zi (x) ≤ τi (x)}.
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Chance-constrained LP

Proof (cnt).

zi (x) is a standardized normal random variable (that is, a normal variable with zero
mean and unit variance). Let Φ(ζ) denote the standard normal cumulative
probability distribution function, i.e.,

Φ(ζ)
.

= Prob{zi (x) ≤ ζ}.

Function Φ(ζ) is well known and tabulated (also, it is related to the so-called error
function, erf(ζ), for which it holds that Φ(ζ) = 0.5(1 + erf(ζ/

√
2))).

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.5

1

0.1
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Robust Least Squares

Let us start from a standard LS problem:

min
x
‖Ax − y‖2, A ∈ Rm,n, y ∈ Rm.

Now assume that A is only known to be within a certain “distance” (in matrix
space) to a given “nominal” matrix Â. Precisely, let us assume that

‖A− Â‖ ≤ ρ,

where ‖ · ‖ denotes the largest singular value norm, and ρ ≥ 0 measures the size of
the uncertainty.

Equivalently, we may say that A = Â + ∆, where ∆ is the uncertainty, which
satisfies ‖∆‖ ≤ ρ.

We now address the robust least-squares problem:

min
x

max
‖∆‖≤ρ

‖(Â + ∆)x − y‖2.

The interpretation of this problem is that we aim at minimizing (with respect to x)
the worst-case value (with respect to the uncertainty ∆) of the residual norm.
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Robust Least Squares

For fixed x , and using the fact that the Euclidean norm is convex, we have that

‖(Â + ∆)x − y‖2 ≤ ‖Âx − y‖2 + ‖∆x‖2.

By definition of the largest singular value norm, and given our bound on the size of
the uncertainty, we have

‖∆x‖2 ≤ ‖∆‖ · ‖x‖2 ≤ ρ‖x‖2.

Thus, we have a bound on the objective value of the robust LS problem:

max
‖∆‖≤ρ

‖(Â + ∆)x − y‖2 ≤ ‖Âx − y‖2 + ρ‖x‖2.

The upper bound is actually attained by for

∆ =
ρ

‖Âx − y‖2 · ‖x‖2

(Âx − y)x>.
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Robust Least Squares

Hence, the robust LS problem is equivalent to

min
x
‖Âx − y‖2 + ρ‖x‖2.

This is a regularized LS problem, which can be cast in SOCP format as follows:

min
x,u,v

u + ρv ,

s.t. u ≥ ‖Âx − y‖2,

v ≥ ‖x‖2.
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