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LECTURE 16

Convexity

The Future is convex.
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Introduction

The key feature that renders an optimization problem “nice” is a property called
convexity, which is introduced in this lecture.

In this lecture, we characterize convex sets and convex functions; in the next one,
we define the class of convex optimization problems as those where a convex
objective function is minimized over a convex set.

Problems that can be modeled in this convexity framework are typically amenable
to an efficient numerical solution.

Further, for certain types of convex models having particular structure, such as
linear, convex quadratic, or convex conic, specialized algorithms are available that
are so efficient as to provide the user with a reliable “technology” for modeling and
solving practical problems.
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Convex Sets

Combinations and hulls

Given a set of points (vectors) in Rn:

P = {x (1), . . . , x (m)},

the linear hull (subspace) generated by these points is the set of all possible linear
combinations of the points:

x = λ1x
(1) + · · ·+ λmx

(m), for λi ∈ R, i = 1, . . . ,m.

The affine hull, affP, of P is the set generated by taking all possible linear
combinations of the points in P, under the restriction that the coefficients λi sum
up to one, that is

∑m
i=1 λi = 1. affP is the smallest affine set containing P.

A convex combination of the points is a special type of linear combination, in which
the coefficients λi are restricted to be nonnegative and to sum up to one, that is

λi ≥ 0 for all i , and
m∑
i=1

λi = 1.
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Convex Sets

Combinations and hulls

Intuitively, a convex combination is a weighted average of the points, with weights
given by the λi coefficients. The set of all possible convex combination is called the
convex hull of the point set:

co(x (1), . . . , x (m)) =

{
x =

m∑
i=1

λix
(i) : λi ≥ 0, i = 1, . . . ,m;

m∑
i=1

λi = 1

}
.

Similarly, the conic hull of a set of points is defined as

conic(x (1), . . . , x (m)) =

{
x =

m∑
i=1

λix
(i) : λi ≥ 0, i = 1, . . . ,m

}
.
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Convex Sets

Convexity

A subset C ⊆ Rn is said to be convex if it contains the line segment between any
two points in it:

x1, x2 ∈ C , λ ∈ [0, 1] ⇒ λx1 + (1− λ)x2 ∈ C .

Subspaces and affine sets, such as lines and hyperplanes are obviously convex, as
they contain the entire line passing through any two points. Half-spaces are also
convex.

A set C is a cone if x ∈ C , then αx ∈ C , for every α ≥ 0. A set C is said to be a
convex cone if it is convex and it is a cone. The conic hull of a set is a convex cone.
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Operations that preserve convexity

Intersection

If C1, . . . ,Cm are convex sets, then their intersection C =
⋂

i=1,...,m Ci is also a
convex set.

The intersection rule actually holds for possibly infinite families of convex sets: if
C(α), α ∈ A ⊆ Rq, is a family of convex sets, parameterized by α, then the set
C =

⋂
α∈A Cα is convex.

Example: An halfspace H = {x ∈ Rn : c>x ≤ d}, c 6= 0 is a convex set. The
intersection of m halfspaces Hi , i = 1, . . . ,m, is a convex set called a polyhedron.
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Examples
Second-order cone

The second-order cone in Rn+1:

Kn = {(x , t), x ∈ Rn, t ∈ R : ‖x‖2 ≤ t} .

is convex, since it is the intersection of half-spaces:

Kn =
⋂

u : ‖u‖2≤1

{
(x , t), x ∈ Rn, t ∈ R : u>x ≤ t

}
.

Here, we have used the representation of ‖ · ‖2 based on the Cauchy-Schwarz
inequality:

‖x‖2 = max
u : ‖u‖2≤1

u>x ,

which implies that

‖x‖2 ≤ t ⇐⇒ u>x ≤ t for every u such that ‖u‖2 ≤ 1.
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Examples
Set of positive semi-definite matrices

Recall that a symmetric matrix X ∈ Sn is positive-semidefinite if and only if

∀ u ∈ Rn : u>Xu ≥ 0.

(From the spectral theorem, this is equivalent to the fact that every eigenvalue of
X is non-negative.)

The set of symmetric, positive-semidefinite matrices, Sn+, is the intersection of (an
infinite number of) half-spaces in Sn:

Sn+ =
⋂
u∈Rn

{
X ∈ Sn : u>Xu ≥ 0

}
.

Hence, Sn+ is convex. In fact, it is a convex cone, since multiplying a PSD matrix
by a positive number results in a PSD matrix.
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Operations that preserve convexity

Affine transformation

If a map f : Rn → Rm is affine, and C ⊂ Rn is convex, then the image set

f (C) = {f (x) : x ∈ C}

is convex.

This fact is easily verified: any affine map has a matrix representation

f (x) = Ax + b.

Then, for any y (1), y (2) ∈ f (C) there exist x (1), x (2) in C such that y (1) = Ax (1) + b,
y (2) = Ax (2) + b. Hence, for λ ∈ [0, 1], we have that

λy (1) + (1− λ)y (2) = A(λx (1) + (1− λ)x (2)) + b = f (x),

where x = λx (1) + (1− λ)x (2) ∈ C .

In particular, the projection of a convex set C onto a subspace is representable by
means of a linear map, hence the projected set is convex.
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Convex Functions

The domain of a function f : Rn → R is the set over which the function is
well-defined:

dom f = {x ∈ Rn : −∞ < f (x) <∞}.

A function f : Rn → R is convex if dom f is a convex set, and for all x , y ∈ dom f
and all λ ∈ [0, 1] it holds that

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y). (1)

We say that a function f is concave if −f is convex.
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About the domain of a convex function

Convex functions must be +∞ outside their domains, so that (1) remains valid
even if x or y 6∈ dom f . The function

f (x) =

{
−
∑n

i=1 log xi if x > 0,
+∞ otherwise,

is convex, but the function

f (x) =

{
−
∑n

i=1 log xi if x > 0,
−∞ otherwise,

is not.
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Epigraph

Given a function f : Rn → (−∞, +∞], its epigraph (i.e., the set of points lying above
the graph of the function) is the set

epif = {(x , t), x ∈ dom f , t ∈ R : f (x) ≤ t} .

Fact: f is a convex function if and only if
epi f is a convex set.
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Sublevel sets

For α ∈ R, the α-sublevel set of f is defined as

Sα
.

= {x ∈ Rn : f (x) ≤ α}.

It can be easily verified that if f is a convex function, then Sα is a convex set,
for any α ∈ R.

The converse of the latter two statements are not true in general. For
instance, f (x) = log(x) is not convex (it is actually concave), nevertheless its
sublevel sets are the intervals (0, eα], which are convex.

The sublevel sets of a “relative entropy
function”, which measures a form of
distance between a discrete probability
distribution and a reference one.
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Example

Consider the “log-sum-exp” function arising in logistic regression:

x ∈ Rn → f (x) = log

(
n∑

i=1

exi

)
.

The epigraph is the set of pairs (x , t) characterized by the inequality t ≥ f (x),
which can be re-written as

epi f =

{
(x , t) ∈ Rn × R :

n∑
i=1

exi−t ≤ 1

}
,

which is convex, due to the convexity of the exponential function.
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Operations that preserve convexity

Nonnegative linear combinations

If fi : Rn → R, i = 1, . . . ,m, are convex functions, then the function

f (x) =
m∑
i=1

αi fi (x), αi ≥ 0, i = 1, . . . ,m

is also convex over ∩i dom fi .

This fact easily follows from the definition of convexity, since for any x , y ∈ dom f
and λ ∈ [0, 1],

f (λx + (1− λ)y) =
m∑
i=1

αi fi (λx + (1− λ)y) ≤
m∑
i=1

αi (λfi (x) + (1− λ)fi (y))

= λf (x) + (1− λ)f (y).

Example: the negative entropy function with values for x ∈ Rn
++

f (x) =
n∑

i=1

xi log xi .

Fa18 17 / 28



Operations that preserve convexity

Affine variable transformation

Let f : Rn → R be convex, and define

g(x) = f (Ax + b), A ∈ Rn,m, b ∈ Rn.

Then, g is convex over dom g = {x : Ax + b ∈ dom f }.

Examples:

f (z) = − log(z), is convex over dom f = R++, hence f (x) = − log(ax + b) is also
convex over ax + b > 0.

For any convex function L : R → R, the function

(w , b) ∈ Rn × R →
m∑
i=1

L(w>xi + b),

where x1, . . . , xm ∈ Rn are given data points, is convex. (Such functions arise as
“loss” functions in machine learning.)
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First-order conditions

If f is differentiable (that is, dom f is open and the gradient exists everywhere on
the domain), then f is convex if and only if

∀x , y ∈ dom f , f (y) ≥ f (x) +∇f (x)>(y − x),

Proof. Assume that f is convex. Then, the definition implies that for any λ ∈ (0, 1]

f (x + λ(y − x))− f (x)

λ
≤ f (y)− f (x),

which, for λ→ 0 yields ∇f (x)>(y − x) ≤ f (y)− f (x).

Conversely, take any x , y ∈ dom f and λ ∈ [0, 1], and let z = λx + (1− λy):

f (x) ≥ f (z) +∇f (z)>(x − z), f (y) ≥ f (z) +∇f (z)>(y − z).

Taking a convex combination of these inequalities, we get

λf (x) + (1− λ)f (y) ≥ f (z) +∇f (z)>0 = f (z),

which concludes the proof.
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First-order conditions

Geometric interpretation

∀x , y ∈ dom f , f (y) ≥ f (x) +∇f (x)>(y − x),

The graph of f is bounded below everywhere
by anyone of its tangent hyperplanes.

The gradient of a convex function at a point x ∈ Rn (if it is nonzero) divides the
whole space in two halfspaces:

H++(x) = {y : ∇f (x)>(y − x) > 0},
H−(x) = {y : ∇f (x)>(y − x) ≤ 0},

and any point y ∈ H++(x) is such that f (y) > f (x).

This is a key fact exploited by the so-called “gradient” algorithms for minimizing a
convex function.
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Second-order conditions

If f is twice differentiable, then f is convex if and only if its Hessian matrix ∇2f is
positive semi-definite everywhere on the (open) domain of f , that is if and only if
∇2f � 0 for all x ∈ dom f .

Example: a generic quadratic function

f (x) =
1

2
x>Hx + c>x + d

has Hessian ∇2f (x) = H. Hence f is convex if and only if H is positive semidefinite.
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Restriction to a line

A function f is convex if and only if its restriction to any line is convex.

By restriction to a line we mean the function

g(t) = f (x0 + tv)

of scalar variable t, for fixed x0 ∈ Rn and v ∈ Rn.

This rule gives a very powerful criterion for proving convexity of certain functions.

Example: for the log-determinant function f (X ) = − log detX over X � 0, it holds
that

g(t) = − log det(X0 + tV ) = − log detX0

∏
i=1,...,n

(1 + tλi (Z)) ,

= − log detX0 +
n∑

i=1

− log (1 + tλi (Z)) ; Z
.

= X
−1/2
0 VX

−1/2
0 .

The first term in the previous expression is a constant, and the second term is the
sum of convex functions, hence g(t) is convex for any X0 ∈ Sn

++, V ∈ Sn, thus
− log detX is convex over the domain Sn

++.
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Pointwise maximum

If (fα)α∈A is a family of convex functions indexed by parameter α, and A is a set, then
the pointwise max function

f (x) = max
α∈A

fα(x)

is convex over the domain {∩α∈A dom fα} ∩ {x : f (x) <∞}.

Proof: The epigraph of f is the set of pairs (x , t) such that

∀ α ∈ A : fα(x) ≤ t.

hence, the epigraph of f is the intersection of the epigraphs of all the functions involved,
therefore f is convex.
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Pointwise maximum rule
Example: functions arising in SOCP

The function f : Rn × Rn → R, with values

f (y , t) = ‖y‖2 − t

is convex, since it is the pointwise maximum of linear functions of (y , t):

f (y , t) = max
u : ‖u‖2≤1

u>y − t.

Using the rule of affine variable transformation, we obtain that for any matrices
A,C , vector b and scalar d , the function

x → ‖Ax + b‖2 − (c>x + d)

is also convex.
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Pointwise maximum rule
Example: sum of k largest elements

Consider the function f : Rn → R with values

f (x) =
k∑

i=1

x[i ]

where x[i ] denotes the i-th largest element in x .

We have:
f (x) = max

u
u>x : u ∈ {0, 1}n, 1>u = k .

For every u, x → u>x is linear, hence f is convex.
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Pointwise maximum rule
Example: largest eigenvalue of a symmetric matrix

Consider the function f : Sn → R, with values for a given X = X> ∈ Sn given by

f (X ) = λmax(X ),

where λmax denotes the largest eigenvalue.

The function is the pointwise maximum of linear functions of X :

F (x) = max
u : ‖u‖2=1

u>Xu.

Hence, f is convex.
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Pointwise maximum rule
Example: norm plus linear

Consider the function f : Rn → R with values

f (x) = ‖Ax + b‖2 + cT x ,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn are given.

From the Cauchy-Schwartz inequality:

f (x) = max
u ‖u‖2≤1

F (x , u), where F (x , u)
.

= u>(Ax + b) + cT x .

For every u, F (·, u) is convex.
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Pointwise maximum rule
Extending the earlier example

Consider the function f : Rn×p → R, with values

f (X ) = ‖AX + B‖+ traceCTX

where A ∈ Rm×n, b ∈ Rm×p, c ∈ Rn×p are given. Here, ‖M‖ is the largest
singular value norm of its matrix argument M, also characterized as

‖M‖ = max
u : u>u=1

‖Mu‖2.

From the definition of the matrix norm above:

f (X ) = max
u ‖u‖2≤1

F (X , u)
.

= ‖(AX + B)u‖2 + traceCTX .

For every u, F (·, u) is convex.
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