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LECTURE 18

Weak Duality

Just as we have two eyes and two
feet, duality is part of life.

Carlos Santana
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Constrained optimization problem

Consider an optimization problem in standard form

p∗ = min
x∈Rn

f0(x) (1)

subject to: fi (x) ≤ 0, i = 1, . . . ,m,

hi (x) = 0, i = 1, . . . , q,

and let D denote the domain of this problem, assumed to be nonempty.

We refer to the above problem as the primal problen.

Note: we are not assuming convexity of f0, f1, . . . , fm or of h1, . . . , hq, for the
time being.
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A running example

To illustrate, we focus on a problem with a single inequality constraint, with f0, f1
defined as

f0(x) :=

 0.0025x5 − 0.00175x4 − 0.212625x3

+0.3384375x2 + 3.368x − 1.692
−10 ≤ x ≤ 10,

+∞ otherwise,

f1(x) := 0.0025x4 − 0.0005x3 − 0.2129x2 + 0.0320x + 3.5340.

A one-dimensional problem: minimize a
fifth-order polynomial on the domain
D = [−10, 10], with one quadratic inequality
constraint that requires x to belong to the
union of two intervals (indicated in light
blue). The (unique) optimal point is shown
in green on the x-axis.
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Lagrangian

Define a new function, called the Lagrangian, with values for x ∈ Rn, λ ∈ Rm and
ν ∈ Rq:

L(x , λ, ν) = f0(x) +
m∑
i=1

λi fi (x) +

q∑
i=1

νihi (x).

Vectors λ and ν are referred to as Lagrange multipliers, or dual variables.

Example: for the previous problem, the Lagrangian is given by: for x ∈ D = [−10, 10]
and λ ∈ R:

L(x , λ) = f0(x) + λf1(x) = a polynomial of degree 5.
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Problem in min-max form

Thanks to the Lagrangian we may express the problem in “min-max” form:

p∗ = min
x

max
λ≥0, ν

L(x , λ, ν).

The above is due to the fact that, for any x ,

max
λ≥0, ν

L(x , λ, ν) =

{
f0(x) if x is feasible,
+∞ otherwise.

We have encoded the problem as one
without constraint, by re-defining the
objective to be +∞ outside the feasible set.
The minimizer of the function (green) is
optimal for the original problem.
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Minimax inequality

For any sets X ,Y and any function F : X × Y → R:

min
x∈X

max
y∈Y

F (x , y) ≥ max
y∈Y

min
x∈X

F (x , y).

Proof: for any (x0, y0) ∈ X × Y :

h(y0)
.

= min
x∈X

F (x , y0) ≤ F (x0, y0) ≤ max
y∈Y

F (x0, y)
.

= g(x0).

Hence, h(y0) ≤ g(x0). Result follows from taking the max over y0 ∈ Y , then the
min over x0 ∈ X .
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Interpretation as a game

Assume you play game against an opponent: given the payoff matrix below, you
pick a row i ∈ {1, . . . , n = 5} and the opponent a column j ∈ {1, . . . ,m = 6}.
The payoff to you, the maximizing player, and cost to your opponent, the
minimizing player, is Mij , where M is the payoff matrix. Players play once, one
after the other. The second player sees what the first does.

7 -8 -7 -8 3 5
9 -5 10 -2 -10 5
-8 1 10 9 7 -2
9 10 0 6 9 3
3 10 6 10 4 -7

n ×m payoff matrix.

Payoff matrix representing the payoff to
the maximizing player. It is equal to the
cost to the minimizing (column) player,
and a gain to the maximizing (row)
player. This is thus a “zero-sum” game.

Question: Do you prefer to play first, or second? What is your payoff in each
case?
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Game interpretation (cont’d)

7 -8 -7 -8 5 3

9 -5 10 -2 5 -10

-8 1 10 9 -2 7

9 10 0 6 3 9

3 10 6 10 -7 4

9 10 10 9 5 3

If the minimizing player plays first, it will
select a column (in bold) that minimizes the
worst-case (maximum) cost (in red); the
second player accordingly chooses the
largest element in that row. The payoff is

p∗ = min
j

max
i

Mij = 3.

7 -8 -7 -8 3 5

9 -5 10 -2 -10 5

-8 1 10 9 7 -2

9 10 0 6 9 3
3 10 6 10 4 -7

-8

-10

-8

0
-7

If the maximizing player plays first, it will
select a row (in bold) that maximizes the
worst-case (minimum) payoff (in blue); the
second player chooses the smallest element
in that row. The payoff is

d∗ = max
i

min
j

Mij = 0.

It is always better to play second in this game, since the second player can adapt
to the decision of the first; the first player must account for the worst-case.
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Weak duality

Applying the minimax inequality to the Lagrangian, we obtain:

p∗ = min
x

max
λ≥0, ν

L(x , λ, ν) ≥ d∗
.

= max
λ≥0, ν

min
x
L(x , λ, ν).

The problem on the right is called the dual problem; it involves maximizing
(over λ ≥ 0, ν) the dual function:

g(λ, ν)
.

= min
x
L(x , λ, ν).

Since g is the pointwise minimum of affine (hence, concave) functions, g is
concave.

Hence the dual problem, a concave maximization problem over a convex set
(Rm

+ × R), is convex!
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Geometry
Making the problem 2D

Consider the problem, with variable x ∈ Rn:

p∗ = min
x

f0(x) : f1(x) ≤ 0.

Define the 2D set of “achievable” values:

A =
{

(u, t) ∈ R2 : ∃ x ∈ Rn, u ≥ f1(x), t ≥ f0(x)
}
.

We can visualize the problem as a 2D problem:

p∗ = min
u,t

t : (u, t) ∈ A, u ≤ 0.

For our example: set A, generated by
plotting the set {(f1(x), f0(x)) : x ∈ Rn},
including the NE quadrant (green) at each
point. Feasible points correspond to where
the curve intersects the set of pairs (u, t),
with u ≤ 0 (dark blue).

Fa18 12 / 24



Geometry

We have
p∗ = min

(u,t)∈A
max
λ≥0

t + λu ≥ d∗ = max
λ≥0

g(λ),

where
g(λ) = min

x
f0(x) + λf1(x) = min

(u,t)∈A
t + λu.

For a given λ, the function g(λ) is a lower bound on p∗. The dual problem
consists in finding the best such lower bound.
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Example
Projection on the probability simplex

0

1

1

1

The probability simplex in Rn is the set
of discrete probabilities

∆n .
=

{
x ∈ Rn : x ≥ 0,

n∑
i=1

xi = 1

}
.

The problem of projecting a given vector z ∈ Rn onto the simplex arises in many
contexts. The projection problem writes

min
x

1

2
‖x − z‖2

2 : x ≥ 0,
n∑

i=1

xi = 1.
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Projection on the probability simplex
Dual problem

Lagrangian:

L(x , ν) =
1

2
‖x − z‖2

2 + ν(1− 1>x) : x ≥ 0.

Dual function:

g(ν) = min
x≥0
L(x , ν) =

1

2
z>z + ν − 1

2

n∑
i=1

max(0, zi + ν)2, (2)

where we use the fact that, for a given β ∈ R:

min
ξ≥0

1

2
ξ2 − βξ = −1

2
max(0, β)2.

The function g can be optimized by brute-force line search, or (faster) bisection
methods.

By dualizing the equality constraint, we made the problem (2) easy (decoupled)!
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Projection on the probability simplex
Strong duality

For every ν ∈ R, the solution to the problem

min
x≥0
L(x , ν)

is unique, and characterized by the zero-gradient condition ∇xL(x , ν) = 0, leading
to

x∗i (ν) = max(0, zi + ν), i = 1, . . . ,m.

In addition, the dual function g is smooth, and at its maximum its gradient is zero:

0 = ∇ν g(ν∗) = 1−
n∑

i=1

max(0, zi + ν∗) = 1−
n∑

i=1

x∗i (ν∗),

which proves that the point x∗(ν∗) is feasible for the primal problem.
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Projection on the probability simplex
Strong duality

Further, after some algebra, exploiting 1>x∗(ν∗) = 1, it can be shown that

1

2
‖x∗(ν∗)− z‖2

2 = g(ν∗) = d∗,

which proves that x∗(ν∗) attains the dual lower bound, hence it is optimal, and
“strong duality” holds, that is:

p∗ = d∗.

This is an example where we are able to recover a primal feasible point from the
dual and prove that strong duality holds, so that solving the dual solves the
original problem. We will see later how to generalize this approach.
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Example
Sum of k largest elements

For given w ∈ Rn, and k ∈ {1, . . . , n − 1}, we define

sk(w) =
k∑

i=1

w[i ],

where w[i ] is the i-th largest element in w .

The function sk is convex, due to the pointwise maximum rule:

sk(w) = max
I

∑
i∈I

wi : I ⊆ {1, . . . , n}, Card I ≤ k

= max
u∈{0,1}n

u>w : 1>u = k .
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Weak and strong duality

By weak duality (third line):

sk(w) = max
u∈{0,1}n

u>w : 1>u = k

= max
u∈{0,1}n

min
ν

u>w + ν(k − 1>u)

≤ min
ν

max
u∈{0,1}n

u>w + ν(k − 1>u)

= min
ν

kν +
n∑

i=1

max(0,wi − ν),

exploiting in the last line that for any vector z

max
u∈{0,1}

u>z =
n∑

i=1

max(0, zi ).

We observe that if ν is set to the (k + 1)-th largest element in w , then we recover
sk(w). Hence equality (strong duality) holds on the second line, and we obtained
the dual form:

sk(w) = min
ν

kν +
n∑

i=1

max(0,wi − ν).
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Application
Diversification in resource allocation

Consider an asset allocation problem where w ≥ 0 is a vector containing the
amountinvested in the different assets:

max
w∈W

r>w : w ≥ 0, sk(w) ≤ θ
n∑

i=1

wi ,

where θ ∈ [0, 1], and

r ∈ Rn contains the expected return on investment for each asset;

The polytope W encodes other constraints on w (such as, upper bound on
its elements);

The constraint on sk(w) means that no more than a fraction θ of the total
budget 1>w is ascribed to the k largest investments.

The above problem is an LP, provided we are willing to express the constraint on
sk(w) as an exponential list of ordinary affine inequalities in w :

∀ I ⊆ {1, . . . , n}, Card I ≤ k :
∑
i∈I

wi ≤ θ
n∑

i=1

wi .
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Using the dual form

The previous näıve approach is not practical, as there are n-choose-k constraints.

The constraint sk(w) ≤ θ(1>w) holds if and only if there exist ν such that

kν +
n∑

i=1

max(0,wi − ν) ≤ θ
n∑

i=1

wi .

The above is a convex, perfectly manageable constraint. It can even be
represented in linear inequality form, by introducing n slack variables

kν +
n∑

i=1

si ≤ θ
n∑

i=1

wi , s ≥ 0, s ≥ w − ν1.

Thus, at the price of augmenting the number of variables, we avoided dealing with
an exponential number of constraints.

Geometrically: the set corresponding to the constraint on sk(w) is a polytope in
Rn, with 2n facets; it is the projection of another polytope in R2n+1 that has
2n + 1 facets only.
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Dual of a linear program

Consider the following optimization problem with linear objective and linear
inequality constraints (a so-called linear program in standard inequality form)

p∗ = min
x

c>x (3)

s.t.: Ax ≤ b,

where A ∈ Rm,n is a matrix of coefficients, and the inequality Ax ≤ b is to be
intended elementwise.

The Lagrangian for this problem is

L(x , λ) = c>x + λ>(Ax − b) = (c + A>λ)>x − λ>b.

In order to determine the dual function g(λ) we next need to minimize L(x , λ)
w.r.t. x . But L(x , λ) is affine in x , hence this function is unbounded below, unless
the vector coefficient of x is zero (i.e., c + A>λ = 0), and it is equal to −λ>b
otherwise. That is,

g(λ) =

{
−∞ if c + A>λ 6= 0
−λ>b if c + A>λ = 0.
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Dual of a linear program

The dual problem then amounts to maximizing g(λ) over λ ≥ 0:

d∗ = max
λ

−λ>b (4)

s.t.: c + A>λ = 0,

λ ≥ 0.

From weak duality, we have that d∗ ≤ p∗.

We may also rewrite the dual problem into an equivalent minimization form, by
changing the sign of the objective, which results in

−d∗ = min
λ

b>λ

s.t.: A>λ+ c = 0,

λ ≥ 0,

and this is again an LP, in standard conic form.
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Take-aways

Weak duality:

We consider a non-convex minimization problem, and refer to it as the
“primal” problem.

Weak duality is a process by which we find a lower bound on the optimal
value of the primal.

It is based on expressing the primal problem in a min-max form, and applying
the minimax inequality.

The lower bound is the value of an optimization problem, referred to as the
dual.

The dual problem is a convex problem, even if the primal is not.

Coming up next:

can we make duality strong?

How can we recover a primal point from the dual problem?

What are applications of duality?
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