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LECTURE 19

Strong Duality

At once he became an enigma. One
side or the other of his nature was
perfectly comprehensible; but both
sides together were bewildering.

Jack London
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A convex problem

We now focus on a convex problem:

p∗ = min
x∈Rn

f0(x) subject to: fi (x) ≤ 0, i = 1, . . . ,m

Ax = b,

where

f0, . . . , fm are convex functions;

the equality constraints are affine, and represented via the matrix A ∈ Rq×n

and vector b ∈ Rq;

we denote the problem’s domain, i.e. the set of points for which all the
functions involved are well-defined, by D.

The Lagrangian is the function L : D × Rm
+ × Rq → R, with values

L(x , λ, ν) = f0(x) +
m∑
i=1

λi fi (x) + ν>(Ax − b).
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The problem’s domain and its relative interior

For simplicity, here we assume that domain of the problem is a polytope,
described as

D = {x ∈ Rn : Cx ≤ d , Fx = g} ,
where C ,F , d , g are matrices and vectors of appropriate sizes, with F full row
rank. We define the relative interior of the domain as:

relintD = {x ∈ Rn : Cx < d , Fx = g} ,

We assume that the relative interior is not empty: relintD 6= ∅.

Example: the probability simplex P = {p : 1>p = 1, p ≥ 0} has relative interior
relintP = {p : 1>p = 1, p > 0}.
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Strong duality for convex problems

We say that the problem is strictly feasible if there exist a point x0 ∈ relintD such that

Ax0 = b, fi (x0) < 0, i = 1, . . . ,m.

Intuitively: all the inequalities are satisfied strictly, including the ones that are implicit
(related to the problem’s domain).

Proposition 1 (Slater’s conditions for convex programs)

If the problem is strictly feasible, then strong duality holds: p∗ = d∗.

To illustrate, consider the problem

p∗ = min
x

f0(x) : f1(x) ≤ 0.

with f0, f1 convex, and assume that the problem is strictly feasible (there exist
x0 ∈ relintD such that f1(x0) < 0).

Fa18 6 / 27



Geometry
Why strong duality holds

Recall from lecture 18 the 2D set of achievable values:

A =
{

(u, t) ∈ R2 : ∃ x ∈ D, u ≥ f1(x), t ≥ f0(x)
}
.

We can visualize the problem as a 2D problem:

p∗ = min
u,t

t : (u, t) ∈ A, u ≤ 0.

Slater condition implies that the set A has a non-empty intersection A− with the
left-half plane defined by u < 0.

Sets A, A− for a problem of the form

p∗ = min
x
‖Ax − b‖2 : ‖x‖2 ≤ 1.
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Dual problem

For a given λ > 0, computing the dual
function amounts to solve

g(λ) = min
x
‖Ax − b‖2 + λ‖x‖2

= min
(u,t)∈A

t + λu.

By construction, the intercept g(λ) ≤ p∗.

Optimizing over the slope −λ < 0 of the
line we can close the duality gap p∗ − g(λ).
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Recovering a primal solution from the dual

Assume that strong duality holds. Assume that we have solved the dual and
computed (λ∗, ν∗). How can we recover a primal optimal point x∗, or decide the
primal problem is not attained?

A “natural” candidate would be any point in the set of x-minimizers of the
Lagrangian x → L(x , λ∗, ν∗). In general it is not true that any such
candidate is even feasible for the primal problem.

A particular case arises when L(x , λ∗, ν∗) has an unique minimizer. In this
case, it can be shown that the unique minimizer x∗ of L(·, λ∗, ν∗) is either
primal feasible, and then it is the primal-optimal solution, or it is not
primal-feasible, and then we can conclude that the no primal-optimal solution
exists.

In lecture 18, we saw an example of this (projection on the probability
simplex).
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Example
Minimum-norm solution to linear equations

Consider the problem (with A ∈ Rm,n full row rank, b ∈ Rm given)

p∗ = min
x

1

2
‖x‖2

2 : Ax = b,

Since AA> � 0, we have b ∈ R(A), and the problem satisfies Slater’s condition1.

Lagrangian: L(x , ν) = 1
2‖x‖

2
2 + ν>(b − Ax).

The function L(·, ν has the unique minimizer x∗(ν) = A>ν.

Dual function: g(ν) = minx L(x , ν) = ν>b − 1
2‖A

>ν‖2
2.

Dual problem:

d∗ = max
ν

ν>b − 1

2
‖A>ν‖2

2.

1If A is full row rank then its column space is the whole space, so that b ∈ R(A) for any b.
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Example
Minimum-norm solution to linear equations (cont’d)

We can solve the dual problem: (recall AA> � 0)

d∗ = max
ν

ν>b − 1

2
‖A>ν‖2

2 =
1

2
b>(AA>)−1b,

with unique maximizer ν∗ = (AA>)−1b. Set

x∗ = arg min
x
L(x , ν∗) = A>ν∗ = A>(AA>)−1b.

Since Ax∗ = b, x∗ is feasible. We can check directly what the theory tells us: that
the feasible point x∗ indeed achieves the lower bound d∗, so it is optimal:

1

2
‖x∗‖2

2 =
1

2
b>(AA>)−1b.
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Duality in unconstrained problems

In many applications (e.g. machine learning) we want to solve an unconstrained
problem, for example LASSO

p∗ = min
w

1

2
‖Ax − b‖2

2 + λ‖x‖1,

where A ∈ Rm×n, b ∈ Rm, λ ≥ 0 are given.

Applying duality we get that the dual function is a constant (there are no dual
variables), equal to p∗ itself. Here, duality does not bring any information.

One way out is to add variables and constraints:

p∗ = min
x,z

1

2
‖z‖2

2 + λ‖x‖1 : z = Ax − b.

The problem satisfies Slater’s condition, since the equality constraints are satisfied
for some pair (x0, z0).
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Dual of LASSO (cont’d)

By strong duality:

p∗ = min
x,z

max
ν

1

2
‖z‖2

2 + λ‖x‖1 + ν>(z − Ax + b)

= d∗
.

= max
ν

g(ν),

where

g(ν)
.

= min
x,z

1

2
‖z‖2

2 + λ‖x‖1 + ν>(z − Ax + b)

= ν>b + min
x

λ‖x‖1 − x>(A>ν) + min
z

1

2
‖z‖2

2 + ν>z

= ν>b − 1

2
‖ν‖2

2 if ‖A>ν‖∞ ≤ λ, +∞ otherwise.

We get the dual:

d∗ = max
ν

ν>b − 1

2
‖ν‖2

2 : ‖A>ν‖∞ ≤ λ.
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Min-max problems

Many optimization problems can be written in min-max form:

p∗ = min
x∈X

max
y∈Y

F (x , y).

for appropriate sets X ,Y and function F .

We always have
p∗ ≥ d∗ := max

y∈Y
min
x∈X

F (x , y).

Under certain assumptions, detailed later, equality holds.
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Sion’s minimax theorem

Theorem 1 (Minimax theorem (simplified))

Let X ⊆ Rn be convex, and let Y ⊆ Rm be a compact set∗ Let F : X × Y → R
be a function such that for every y ∈ Y , F (·, y) is convex and continuous over X ,
and for every x ∈ X , F (x , ·) is concave and continuous over Y . Then

max
y∈Y

min
x∈X

F (x , y) = min
x∈X

max
y∈Y

F (x , y).

∗Compact set: a set that is bounded and closed (contains the limit of any
converging sequence of points inside it). Example includes norm balls, such as
{y ∈ Rm : ‖y‖p ≤ 1}, with p ∈ {1, 2,∞}; and the probability simplex
∆m .

= {y ∈ Rm
+ : 1>y = 1}.
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Geometry
A convex-concave function and its saddle point
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Example
Square-root LASSO

p∗ = min
x
‖Ax − b‖2 + µ‖x‖1,

where A ∈ Rm,n, b ∈ Rm, and µ > 0.

Min-max form: from (generalized) Cauchy-Schwartz

p∗ = min
x

max
(u,v)∈U

u>(b − Ax) + v>x

where
U := {(u, v) ∈ Rm × Rn : ‖u‖2 ≤ 1, ‖v‖∞ ≤ µ} .
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Square-root LASSO (cont’d)

Sion’s theorem applies, and leads to

p∗ = max
(u,v)∈U

min
x

u>(b − Ax) + v>x .

The inner problem is very simple to solve:

g(u, v)
.

= min
x

u>(b − Ax) + v>x =

{
b>u if A>u = v ,
−∞ otherwise.

Hence
p∗ = max

(u,v)∈U
b>u : A>u = v .

Eliminating v :
p∗ = max

u
b>u : ‖u‖2 ≤ 1, ‖A>u‖∞ ≤ µ.
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Safe feature elimination (SAFE)

Let ai denote the i-th column of matrix A; ai corresponds to the i-th feature
(variable xi ) in the original problem.

Primal problem:
p∗ = min

x
‖Ax − b‖2 + µ‖x‖1,

Dual problem:

p∗ = max
u

b>u : ‖u‖2 ≤ 1, |a>i u| ≤ µ, i = 1, . . . , n.

We observe that if ‖ai‖2 < µ, then

|a>i u| < µ for all u : ‖u‖2 ≤ 1.

This means that i-constraint is not active in the dual problem: its value remains
the same if we remove that constraint.
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SAFE

Removing the i-th constraint from the dual really amounts to solving the original
problem with that feature removed. The previous statement says that in that
process we do not change the value of the problem. This implies that we can
safely set xi = 0.

The result is that a quick computation (computing the norms of the colums of A)
potentially allows to eliminate features from the data, leading to computational
savings.
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Strong duality in zero-sum games
Revisiting the game from Lecture 18

7 -8 -7 -8 3 5
9 -5 10 -2 -10 5
-8 1 10 9 7 -2
9 10 0 6 9 3
3 10 6 10 4 -7

n ×m payoff matrix.

If the minimizing (column) player plays
first, the value of the game is

p∗ = min
j

max
i

Mij = 3.

Otherwise, it is lower (better for the
column, minimizing player):

d∗ = max
i

min
j

Mij = 0.

Can the first player “close the gap”?
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Idea
Playing a random strategy

Assume the minimizing (column) player plays first, and that the game is played
many times.

In an attempt to confuse the other player, the minimizing player plays according
to a randomized strategy, parametrized by a probability distribution, i.e. a vector x
in the probability simplex

∆m .
=
{
x ∈ Rn

+ : 1>x = 1
}
.

For j ∈ {1, . . . ,m}, xj is the probability of selecting column j . We assume that
the maximizing player does the same, with a randomized strategy y ∈ ∆n. Note
that randomized strategies include “pure” ones as special case, so the second
player has nothing to loose in using such a strategy. For given x ∈ ∆n, y ∈ ∆m,
the expected payoff is ∑

i,j

yiMijxj = x>My .

If the minimizing (column) player plays first, it should choose its randomized
strategy according to

p∗rand = min
x∈∆m

max
y∈∆n

y>Mx .
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Strong duality result

Applying Sion’s minimax theorem gives us

p∗rand = min
x∈∆m

max
y∈∆n

y>Mx = max
y∈∆n

min
x∈∆m

y>Mx = d∗rand.

With a randomized strategy, the order of play is irrelevant.

We can also take the dual of the inner problem; strong duality holds via Slater’s
condition. Hence, for a given x :

max
y∈∆n

y>Mx = min
t

t : t ≥ (Mx)i , i = 1, . . . ,m.

Letting x be variable leads to the LP expression for the value of the game:

p∗rand = d∗rand = min
x,t

t : t · 1 ≥ Mx , x ≥ 0, 1>x = 1.
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Example

Solving the LP with the game payoff data given, we obtain

d∗ = 0 < p∗rand = d∗rand = 2.1525 < 3 = p∗,

so the minimizing player looses less with the randomized strategy than with a pure
one. The second player achieves the best average payoff, given an adversary that
plays random.

The solutions for both players are obtained by noticing that the variable y is dual
to the constraint2 t · 1 ≥ Mx . Alternatively we can solve the dual LP to get y∗:

p∗rand = d∗rand = max
y ,t

t : t · 1 ≤ M>y , y ≥ 0, 1>y = 1,

which leads to

y∗ =
(

0.4517 0.1714 0.33480 0.0420
)>
,

x∗ =
(

0.2568 0 0.2246 0 0.3332 0.1854
)>
.

2Dual variables can be provided as part of the solution in CVX.
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Logistic regression

Recall the logistic regression problem in lecture 17:

p∗ = min
w ,b
− log L(w , b)

.
= −

m∑
i=1

log
(
1 + exp(−yi (w>xi + b))

)
,

where X = [x1, . . . , xm] is the data matrix (each column xi a data point) and
y ∈ {−1, 1}m is the label vector.

If we try Lagrange duality directly, since there are no constraints, we get that the
dual function is a constant, equal to p∗ — not a very useful dual!

We can get a meaningful dual by introducing new variables and equality
constraints.
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Introducing equality variables

Assuming that the bias term b is zero for simplicity, we have

p∗ = min
w ,v

m∑
i=1

f (vi ) : v = A>w ,

where A = [y1x1, . . . , ymxm] ∈ Rn×m, and f is the convex function, with values for
ξ ∈ R given by

f (ξ)
.

= log(1 + e−ξ).

The problem has (feasible) linear equality constraints; thanks to Slater’s
conditions for strong duality, we can write p∗ = d∗ = maxν g(ν), where g is the
dual function

g(ν)
.

= min
w ,v

m∑
i=1

f (vi ) + ν>(A>w − v).

The minimization over w results in −∞ if Aν 6= 0, 0 otherwise; the one over v
can be done in closed form, as seen next . . .
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Dual problem

With the convention 0 log 0 = 0: for any α ∈ R,

min
ξ

f (ξ)− αξ =

{
−α logα− (1− α) log(1− α) if 0 ≤ α ≤ 1,
+∞ otherwise.

We obtain a dual form of the problem:

p∗ = d∗ = max
ν

g(ν) : ν ∈ [0, 1]m, Aν = 0,

where g is the (concave) “entropy” function, with values for ν ∈ [0, 1]m given by

g(ν)
.

= −
m∑
i=1

(νi log νi + (1− νi ) log(1− νi )) .
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