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LECTURE 20

Optimality Conditions

Duality, in mathematics, principle
whereby one true statement can be
obtained from another by merely
interchanging two words.

Britannica
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Overview

In this lecture, we describe the so-called “optimality conditions” that characterize
optimality for convex programs, and generalize the “zero-gradient” condition that
arises in convex unconstrained problems.

Theese conditions have many uses, in particular in

the theoretical analysis of solutions to convex problems;

the design of convex optimization algorithms.

We will first look at an “abstract” form of optimality conditions that offer
geometric insight and work well for equality constraints only; then develop
optimality conditions for the general case.

Fa18 4 / 25



Primal problem

In this lecture, we consider the following “primal” problem

p∗ = min
x∈Rn

f0(x) subject to: fi (x) ≤ 0, i = 1, . . . ,m,

Ax = b,

where

f0, . . . , fm are convex differentiable functions, which we assume to be defined
everywhere (hence the domain of the problem is D = Rn);

matrix A ∈ Rq×n and vector b ∈ Rq are given.

We denote by D the domain of the problem: D .
=

⋂m
i=0 dom fi .

We make a few assumptions on the above problem:

it is strictly feasible (so that Slater’s condition holds);

it is attained: there exist x∗ ∈ D such that p∗ = f0(x∗).
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Abstract form of optimality conditions

The primal problem can be written in abstract form

min
x∈X

f0(x),

where X ⊆ D denotes the feasible set.

Proposition 1

Consider the optimization problem minx∈X f0(x), where f0 is convex and differentiable,
and X is convex. Then,

x ∈ X is optimal ⇔ ∇f0(x)>(y − x) ≥ 0, ∀y ∈ X . (1)

Note: the above conditions are often hard to work with, due to the presence of the
“∀ y . . .” statement, which requires checking a condition over the entire feasible set.
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Proof

First let us show the implication from right to left in (1). Since f0 is convex, for every
x , y ∈ dom f0, we have

f0(y) ≥ f0(x) +∇f0(x)>(y − x). (2)

The implication from right to left in (1) is immediate, since

∇f0(x)>(y − x) ≥ 0 for every y ∈ X

implies, from (2), that f0(y) ≥ f0(x) for all y ∈ X , i.e., that x is optimal.

Conversely, assume that x is optimal. We show that then ∇f0(x)>(y − x) ≥ 0 for all
y ∈ X . If ∇f0(x) = 0, then the claim holds trivially. Assume now that ∇f0(x) 6= 0, and
that there exist y ∈ X such that ∇f0(x)>(y − x) < 0. Consider the function

g : t ∈ [0, 1]→ f0(x(t)),

where x(t) = ty + (1− t)x ; note that x(t) ∈ X for every t ∈ [0, 1], since X is convex.
Further, g ′(0) = ∇f0(x)>(y − x). Hence, for sufficiently small t > 0, g(t) < g(0), which
translates as f (x(t)) < f (x); with x(t) ∈ X , this contradicts the optimality of x . �
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Optimality conditions

Geometric interpretation

If ∇f0(x) 6= 0, then ∇f0(x) is a normal direction defining an hyperplane
{y : ∇f0(x)>(y − x) = 0} such that:

x is on the boundary of the feasible set X , and

the whole feasible set lies on one side of this hyperplane, that is in the halfspace
defined by

H+(x) = {y : ∇f0(x)>(y − x) ≥ 0}.
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Optimality conditions

Geometric interpretation

Notice that the gradient vector ∇f0(x) defines two set of directions:

for directions v+ such that ∇f0(x)>v+ > 0 (i.e., directions that have positive inner
product with the gradient), if we make a move away from x in direction v+, then
the objective f0 increases.

for directions v− such that ∇f0(x)>v+ < 0 (i.e., descent directions, that have
negative inner product with the gradient), if we make a sufficiently small move
away from x in direction v−, then the objective f0 locally decreases.

Condition (1) then says that x is an optimal point if and only if there is no feasible
direction along which we may improve (decrease) the objective.
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Optimality conditions for unconstrained problems

Proposition 2
In a convex unconstrained problem with differentiable objective, x is optimal if and only if

∇f0(x) = 0. (3)

Proof: When the problem is unconstrained, i.e., X = Rn, then the optimality condition
(1) requires that

∀ y ∈ Rn : ∇f0(x)>(y − x) ≥ 0 ⇐⇒ ∀ z ∈ Rn : ∇f0(x)>z ≥ 0

⇐⇒ ∀ z ∈ Rn : ∇f0(x)>z = 0

⇐⇒ ∇f0(x) = 0.

Fa18 10 / 25



Optimality conditions for equality-constrained problems

Consider the problem
min
x

f0(x) : Ax = b, (4)

where A ∈ Rm×n, b ∈ Rm are given. We assume that b ∈ R(A), so the problem is
feasible. Here the feasible set is

X = {y : Ay = b} .

Proposition 3

A point x is optimal for problem (4) if and only if

Ax = b and ∃ ν ∈ Rm : ∇f0(x) + A>ν = 0.
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Proof

The point x ∈ X is optimal iff

∇f0(x)>(y − x) ≥ 0, ∀y ∈ X .

Since Ax = b, the feasible set can be written as

X = {x + z : z ∈ N (A)} .

The optimality condition becomes

∀ z ∈ N (A) : ∇f0(x)>z ≥ 0.

Since z ∈ N (A) if and only if −z ∈ N (A), we see that the condition is equivalent
to

∀ z ∈ N (A) : ∇f0(x)>z = 0.

That is, ∇f0(x) ∈ N (A)⊥. Recall the fundamental theorem of linear algebra,
which states that N (A)⊥ = R(A>); we obtain that there exist ν ∈ Rm such that
∇f0(x) + A>ν = 0.
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Example
Minimum-norm solutions to linear equations

Consider the Euclidean projection problem seen in lecture 8:

min
x

1

2
x>x : Ax = b.

(The solution is the projection of 0 on the affine subspace X .)

We obtain that x is optimal if and only if there exist ν ∈ Rm such that

Ax = b, x + A>ν = 0. (5)

Assuming that A is full row rank (hence, AA> � 0), we get the unique solution:

ν∗ = −(AA>)−1b, x∗ = −A>ν∗ = A>(AA>)−1b.
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General case
Dual problem

Turning to the general problem (1), recall the expression of the problem dual
to (1), as seen in lecture 18:

d∗ = max
λ≥0

g(λ), (6)

where g is the dual function

g(λ) = min
x
L(x , λ, ν),

with L the Lagrangian

L(x , λ) = f0(x) +
m∑
i=1

λi fi (x).

Since Slater’s condition hold, we have strong duality: p∗ = d∗.

We make the further assumption that d∗ is attained by some λ∗ ≥ 0.
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Karush-Kuhn-Tucker (KKT) conditions

For the convex problem (1), we say that a pair (x , λ) ∈ Rn × Rm satisfies the
Karush-Kuhn-Tucker (KKT) conditions if

1 Primal feasibility: x is feasible for the primal problem:

x ∈ D, fi (x) ≤ 0, i = 1, . . . ,m.

2 Dual feasibility: λ ≥ 0.
3 Complementary slackness: λi fi (x) = 0, i = 1, . . . ,m.
4 Lagrangian stationarity: x ∈ arg min L(·, λ), which, in the case when the

functions fi , i = 0, . . . ,m are differentiable, writes

∇x f0(x) +
m∑
i=1

λi∇x fi (x) = 0.

Proposition 4

Assume that the primal problem (1) is convex, and attained; that its dual is also
attained; and that strong duality holds. Then, a primal-dual pair (x , λ) is optimal
if and only if it satisfies the KKT conditions.
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Proof: sufficiency

Assume that the KKT conditions are satisfied for some pair (x∗, λ∗). The first
two conditions imply that x∗ is primal feasible, and λ∗ is dual feasible. Further,
since L(x , λ∗) is convex in x , the fourth condition states that x∗ is a global
minimizer of L(x , λ∗), hence

g(λ∗, ν∗) = min
x∈D
L(x , λ∗) = L(x∗, λ∗)

= f0(x∗) +
m∑
i=1

λ∗i fi (x
∗)

= f0(x∗),

where the last equality follows from complementary slackness.

The above proves that the primal-dual feasible pair (x∗, λ∗) is optimal: the
corresponding duality gap p∗ − d∗ is zero, since x∗ (resp. λ∗) attains the lower
bound d∗ (resp. upper bound p∗).
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Proof: necessity

Assume that (x∗, λ∗) is an optimal primal-dual pair.

Since p∗ = f0(x∗), d∗ = g(λ∗), and p∗ = d∗, we have

f0(x∗) = g(λ∗) = inf
x∈D
L(x , λ∗) ≤ L(x , λ∗), ∀ x ∈ D.

Since the last inequality holds for all x ∈ D, it must hold also for x∗, hence

f0(x∗) = inf
x∈D
L(x , λ∗) ≤ L(x∗, λ∗) = f0(x∗) +

m∑
i=1

λ∗i fi (x
∗) ≤ f0(x∗),

where the last inequality follows from the fact that x∗ is optimal, hence feasible, for
the primal problem, therefore fi (x

∗) ≤ 0, and λ∗ is optimal, hence feasible, for the
dual, therefore λ∗i ≥ 0, whereby each term λ∗i fi (x

∗) is ≤ 0.

Observing the last chain of inequalities, since the first and the last terms are equal,
we must conclude that all inequalities must actually hold with equality, that is

f0(x∗) = inf
x∈D
L(x , λ∗) = L(x∗, λ∗).
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Complementary slackness and Lagrangian stationarity

These two conditions are at the heart of the KKT conditions.

The complementary slackness property prescribes that a primal and the corresponding
dual inequality cannot be slack simultaneously, that is, if fi (x

∗) < 0, then it must be
λ∗i = 0, and if λ∗i > 0, then it must be fi (x

∗) = 0.

The second property (i.e., the fact that x∗ is a minimizer of L(x , λ∗)) can, in some cases,
be used to recover a primal-optimal variable from the dual-optimal variables (see later).
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Recovering primal solutions from the dual

First observe that if the primal problem is convex, then L(x , λ∗) is also convex in x .
Global minimizers of this function can then be determined by unconstrained
minimization techniques. For instance, if L(x , λ∗) is differentiable, a necessary
condition for x to be a global minimizer is determined by the zero-gradient
condition ∇xL(x , λ∗) = 0, that is,

∇x f0(x) +
m∑
i=1

λ∗i ∇x fi (x) = 0.

However, L(x , λ∗) may have multiple global minimizers, and it is not guaranteed
that every global minimizer of L is a primal-optimal solution—what is guaranteed is
that the primal-optimal solution x∗ is among the global minimizers of L(·, λ∗).

A particular case arises when L(·, λ∗) has an unique minimizer. In this case the
unique minimizer x∗ of L is either primal feasible, and hence it is the
primal-optimal solution, or it is not primal feasible, and then we can conclude that
the no primal-optimal solution exists.
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Example
Power allocation in a communication channel1

We seek to best allocate a power level to n communication channels. The
problem can be formulated as

p∗ = min
x
−

n∑
i=1

log(αi + xi ) : x ≥ 0,
m∑
i=1

xi = 1.

where αi > 0 is a measure of the noise over the channel. Here the objective
function is related to the communication rate. We use the Lagrangian

L(x , λ, ν) = −
n∑

i=1

log(αi + xi )− λ>x + ν(
m∑
i=1

xi − 1),

with λ ∈ Rn
+, ν ∈ R.

1From Boyd & Vandenberghe’s book, Convex Optimization.
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KKT conditions

Slater’s conditions are satisfied. The KKT conditions are:

Primal feasibility: x ≥ 0 and 1>x = 1;

Dual feasibility: λ ≥ 0;

Stationarity: λi + 1/(xi + αi ) = ν, i = 1, . . . , n.

Complementarity: λixi = 0, i = 1, . . . , n.

For an optimal pair (x∗, λ∗, ν∗):

if ν∗ ≤ 1/αi , then 0 ≤ λ∗i ≤ 1/αi − 1/(x∗i + αi ) = xi/(αi (αi + xi )). If λ∗i > 0, then
x∗i = 0 from the complementarity conditions; this yields a contradiction. Hence
λi = 0 and x∗i = 1/ν∗ − αi (≥ 0) in that case.

otherwise, ν∗ > 1/αi ; this leads to λ∗i + 1/(x∗i + αi ) > 1/αi . Again, assuming
x∗i > 0 leads to λi = 0 and a contradiction; hence x∗i = 0 in that case.

We have obtained x∗i = max(0, 1/ν∗ − αi ) for every i . Summing, we obtain a condition
that characterizes ν∗:

1 =
n∑

i=1

x∗i =
n∑

i=1

max(0, 1/ν∗ − αi ).

Fa18 21 / 25



Waterfilling algorithm

We can solve this 1D equation using a simple method called the waterfilling
algorithm. Once ν∗ is found, we then recover a primal optimal point via
x∗i = max(0, 1/ν∗ − αi ), i = 1, . . . , n.

The height of patch i is given by αi .
The region is flooded to a level 1/ν,
using a total quantity of water equal to
one. The height of the water (shown
shaded) above each patch is the optimal
value of xi .
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Example
Maximum entropy distribution

Consider the problem

min
x

f0(x)
.

=
n∑

i=1

xi log xi : x ≥ 0, 1>x = 1.

The feasible set is the set of discrete distributions in Rn; The objective function is called
the negative entropy of the distribution x .

Lagrangian: L(x , λ, ν) = f0(x)− λ>x + ν(1− 1>x).

KKT conditions: x ≥ 0, 1>x = 1, λ ≥ 0, and

λixi = 0, log xi = λi + ν − 1, i = 1, . . . , n.

The stationarity conditions imply that x∗ > 0, hence λ∗ = 0, and thus xi does not
depend on i . Since 1>x = 1, we obtain that x∗ = (1/n)1, which is the uniform
distribution.

This fact illustrates why the (negative) entropy function is used as a measure of
“distance” between a distribution, to the uniform one.
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Example
Risk parity portfolio

Consider a portfolio optimization problem: to find a portfolio weight vector
x ∈ Rn

++, containing positive dollar amounts to invest in various assets, such that
the risk parity condition holds:

∀ i : xi (Cx)i =
1

n
x>Cx ,

where C = C> � 0 is the (positive-definite) covariance of the assets. The
interpretation of a risk-parity portfolio is that, since

n∑
i=1

xi (Cx)i = x>Cx ,

all the partial contributions xi (Cx)i (> 0) of each asset i to the total risk in the
portfolio, as measured by its variance x>Cx , are equal (“at parity”).
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Risk parity portfolio

Consider the optimization problem

min
x

f0(x) + x>Cx , (7)

where

f0(x)
.

=

 −
n∑

i=1

log xi if x > 0,

+∞ otherwise.

Lagrangian:

L(x , λ) = −
n∑

i=1

log xi + x>Cx − λ>x .

KKT conditions: x > 0 (since D = Rn
++), λ ≥ 0,

λixi = 0, − 1

xi
+ (Cx)i = λi , i = 1, . . . , n.

Since x > 0, we have λ = 0, and we obtain xi (Cx)i = 1, i = 1, . . . , n; summing, we get
x>Cx = n, which implies that the risk parity conditions hold.

This means that by solving the convex problem (7), we obtain a risk parity portfolio.
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