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LECTURE 2

Vectors and Functions

Mathematicians are like
Frenchmen: whatever you say to
them, they translate into their own
language, and turn it into
something entirely different.

Goethe
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Introduction

A vector is a collection of numbers, arranged in a column or a row, which can be
thought of as the coordinates of a point in n-dimensional space.

Equipping vectors with sum and scalar multiplication allows to define notions such
as independence, span, subspaces, and dimension. Further, the scalar product
introduces a notion of angle between two vectors, and induces the concept of
length, or norm.

Via the scalar product, we can also view a vector as a linear function. We can
compute the projection of a vector onto a line defined by another vector, onto a
plane, or more generally onto a subspace.

Projections can be viewed as a first elementary optimization problem (finding the
point in a given set at minimum distance from a given point), and they constitute a
basic ingredient in many processing and visualization techniques for
high-dimensional data.
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Basics
Notation

We usually write vectors in column format:

x =


x1
x2
...
xn

 .
Element xi is said to be the i-th component (or the i-th element, or entry) of vector
x , and the number n of components is usually referred to as the dimension of x .

When the components of x are real numbers, i.e. xi ∈ R, then x is a real vector of
dimension n, which we indicate with the notation x ∈ Rn.

We shall seldom need complex vectors, which are collections of complex numbers
xi ∈ C, i = 1, . . . , n. We denote the set of such vectors by Cn.

To transform a column-vector x in row format and vice versa, we define an
operation called transpose, denoted with a superscript >:

x> =
[
x1 x2 · · · xn

]
; x>> = x .
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Examples

Example 1 (Bag-of-words representations of text)

Consider the following text:

“A (real) vector is just a collection of real numbers, referred to as
the components (or, elements) of the vector; Rn denotes the set
of all vectors with n elements. If x ∈ Rn denotes a vector, we use
subscripts to denote elements, so that xi is the i-th component of
x . Vectors are arranged in a column, or a row. If x is a column
vector, x> denotes the corresponding row vector, and vice-versa.”

Row vector c = [5, 3, 3, 4] contains the number of times each word in the list
V = {vector, elements, of, the} appears in the above paragraph.

Dividing each entry in c by the total number of occurrences of words in the list (15,
in this example), we obtain a vector x = [1/3, 1/5, 1/5, 4/15] of relative word
frequencies.

Frequency-based representation of text documents (bag-of-words).
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Examples

Example 2 (Time series)

A time series represents the evolution in (discrete) time of a physical or economical
quantity.

If x(k), k = 1, . . . ,T , describes the numerical value of the quantity of interest at
time k, then the whole time series, over the time horizon from 1 to T , can be
represented as a T -dimensional vector x containing all the values of x(k), for k = 1
to k = T , that is

x = [x(1) x(2) · · · x(T )]> ∈ RT .

Adjusted close price of the Dow Jones Industrial Average Index, over a 66 days period
from April 19, 2012 to July 20, 2012.
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Example 3 (Images)

We are given a gray-scale image where each pixel has a certain value representing the
luminance level (0=black). We can arrange the image as a vector of pixels.

. . .

Figure: Row vector representation of an image.

F 2017 8 / 43



Vector spaces

The operations of sum, difference and scalar multiplication are defined in an
obvious way for vectors: for any two vectors v (1), v (2) having equal number of
elements, we have that the sum v (1) + v (2) is simply a vector having as components
the sum of the corresponding components of the addends, and the same holds for
the difference.

If v is a vector and α is a scalar (i.e., a real or complex number), then αv is
obtained multiplying each component of v by α. If α = 0, then αv is the zero
vector, or origin.

A vector space, X , is obtained by equipping vectors with the operations of addition
and multiplication by a scalar.

A simple example of a vector space is X = Rn, the space of n-tuples of real
numbers. A less obvious example is the set of single-variable polynomials of a given
degree.
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Subspaces and span

A nonempty subset V of a vector space X is called a subspace of X if, for any
scalars α, β,

x , y ∈ V ⇒ αx + βy ∈ V.
In other words, V is “closed” under addition and scalar multiplication.

A linear combination of a set of vectors S = {x (1), . . . , x (m)} in a vector space X is
a vector of the form α1x

(1) + · · ·+ αmx
(m), where α1, . . . , αm are given scalars.

The set of all possible linear combinations of the vectors in S = {x (1), . . . , x (m)}
forms a subspace, which is called the subspace generated by S , or the span of S ,
denoted with span(S).

Given two subspaces X ,Y in Rn, the direct sum of X ,Y, which we denote by
X ⊕ Y, is the set of vectors of the form x + y , with x ∈ X , y ∈ Y. It is readily
checked that X ⊕ Y is itself a subspace.
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Bases and dimensions

A collection x (1), . . . , x (m) of vectors in a vector space X is said to be linearly
independent if no vector in the collection can be expressed as a linear combination
of the others. This is the same as the condition

m∑
i=1

αix
(i) = 0 =⇒ α = 0.

Given a subspace S of a vector space X , a basis of S is a set B of vectors of
minimal cardinality, such that span(B) = S. The cardinality of a basis is called the
dimension of S.

If we have a basis {x (1), . . . , x (d)} for a subspace S, then we can write any element
in the subspace as a linear combination of elements in the basis. That is, any x ∈ S
can be written as

x =
d∑

i=1

αix
(i),

for appropriate scalars αi
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Affine sets

An affine set is a set of the form

A = {x ∈ X : x = v + x (0), v ∈ V},

where x (0) is a given point and V is a given subspace of X . Subspaces are just
affine spaces containing the origin.

Geometrically, an affine set is a flat passing through x (0). The dimension of an
affine set A is defined as the dimension of its generating subspace V.

A line is a one-dimensional affine set. The line through x0 along direction u is the
set

L = {x ∈ X : x = x0 + v , v ∈ span(u)},
where in this case span(u) = {λu : λ ∈ R}.
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Euclidean length

The Euclidean length of a vector x ∈ Rn is the square-root of the sum of squares of
the components of x , that is

Euclidean length of x
.

=
√

x2
1 + x2

2 + · · ·+ x2
n .

This formula is an obvious extension to the multidimensional case of the
Pythagoras theorem in R2.

The Euclidean length represents the actual distance to be “travelled” for reaching
point x from the origin 0, along the most direct way (the straight line passing
through 0 and x).
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Basics

Norms and `p norms

A norm on a vector space X is a real-valued function with special properties that
maps any element x ∈ X into a real number ‖x‖.

Definition 1

A function from X to R is a norm, if

‖x‖ ≥ 0 ∀x ∈ X , and ‖x‖ = 0 if and only if x = 0;
‖x + y‖ ≤ ‖x‖+ ‖y‖, for any x , y ∈ X (triangle inequality);
‖αx‖ = |α|‖x‖, for any scalar α and any x ∈ X .

`p norms are defined as

‖x‖p
.

=

(
n∑

k=1

|xk |p
)1/p

, 1 ≤ p <∞.
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Basics

Norms and `p norms

For p = 2 we obtain the standard Euclidean length

‖x‖2
.

=

√√√√ n∑
k=1

x2
k ,

or p = 1 we obtain the sum-of-absolute-values length

‖x‖1
.

=
n∑

k=1

|xk |.

The limit case p =∞ defines the `∞ norm (max absolute value norm, or
Chebyshev norm)

‖x‖∞
.

= max
k=1,...,n

|xk |.

The cardinality of a vector x is often called the `0 (pseudo) norm and denoted with
‖x‖0.
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Inner product

An inner product on a (real) vector space X is a real-valued function which maps
any pair of elements x , y ∈ X into a scalar denoted as 〈x , y〉. The inner product
satisfies the following axioms: for any x , y , z ∈ X and scalar α

〈x , x〉 ≥ 0;
〈x , x〉 = 0 if and only if x = 0;
〈x + y , z〉 = 〈x , z〉+ 〈y , z〉;
〈αx , y〉 = α〈x , y〉;
〈x , y〉 = 〈y , x〉.

A vector space equipped with an inner product is called an inner product space.

The standard inner product defined in Rn is the “row-column” product of two
vectors

〈x , y〉 = x>y =
n∑

k=1

xkyk .

The inner product induces a norm: ‖x‖ =
√
〈x , x〉.
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Angle between vectors

0

The angle between x and y is defined via the relation

cos θ =
x>y

‖x‖2‖y‖2
.

When x>y = 0, the angle between x and y is θ = ±90◦, i.e., x , y are orthogonal.

When the angle θ is 0◦, or ±180◦, then x is aligned with y , that is y = αx , for
some scalar α, i.e., x and y are parallel. In this situation |x>y | achieves its
maximum value |α|‖x‖22.
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Cauchy-Schwartz and Hölder inequality

Since | cos θ| ≤ 1, it follows from the angle equation that

|x>y | ≤ ‖x‖2‖y‖2,

and this inequality is known as the Cauchy-Schwartz inequality.

A generalization of this inequality involves general `p norms and it is known as the
Hölder inequality.

For any vectors x , y ∈ Rn and for any p, q ≥ 1 such that 1/p + 1/q = 1, it holds
that

|x>y | ≤
n∑

k=1

|xkyk | ≤ ‖x‖p‖y‖q.
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Maximization of inner product over norm balls

Our first optimization problem:
max
‖x‖p≤1

x>y .

For p = 2:

x∗2 =
y

‖y‖2
,

hence max‖x‖2≤1 x>y = ‖y‖2.

For p =∞:
x∗∞ = sgn(y),

and max‖x‖∞≤1 x>y =
∑n

i=1 |yi | = ‖y‖1.

For p = 1:

[x∗1 ]i =

{
sgn(yi ) if i = m
0 otherwise

, i = 1, . . . , n,

where m is an index such that |yi | ≤ |ym| for all i . We thus have
max‖x‖1≤1 x>y = maxi |yi | = ‖y‖∞.
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Orthogonal vectors

Generalizing the concept of orthogonality to generic inner product spaces, we say
that two vectors x , y in an inner product space X are orthogonal if 〈x , y〉 = 0.
Orthogonality of two vectors x , y ∈ X is symbolized by x ⊥ y .

Nonzero vectors x (1), . . . , x (d) are said to be mutually orthogonal if 〈x (i), x (j)〉 = 0
whenever i 6= j . In words, each vector is orthogonal to all other vectors in the
collection.

Proposition 1
Mutually orthogonal vectors are linearly independent.

A collection of vectors S = {x (1), . . . , x (d)} is said to be orthonormal if, for
i , j = 1, . . . , d ,

〈x (i), x (j)〉 =

{
0 if i 6= j ,
1 if i = j .

In words, S is orthonormal if every element has unit norm, and all elements are
orthogonal to each other. A collection of orthonormal vectors S forms an
orthonormal basis for the span of S .
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Orthogonal complement

A vector x ∈ X is orthogonal to a subset S of an inner product space X if x ⊥ s for
all s ∈ S.

The set of vectors in X that are orthogonal to S is called the orthogonal
complement of S, and it is denoted with S⊥;

0

Theorem 1 (Orthogonal decomposition)

If S is a subspace of an inner-product space X , then any vector x ∈ X can be written in
a unique way as the sum of an element in S and one in the orthogonal complement S⊥:

X = S ⊕ S⊥ for any subspace S ⊆ X .
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Projections

The idea of projection is central in optimization, and it corresponds to the problem
of finding a point on a given set that is closest (in norm) to a given point.

Given a vector x in an inner product space X (say, e.g., X = Rn) and a closed set
S ⊆ X , the projection of x onto S, denoted as ΠS(x), is defined as the point in S
at minimal distance from x :

ΠS(x) = arg min
y∈S
‖y − x‖,

where the norm used here is the norm induced by the inner product, that is
‖y − x‖ =

√
〈y − x , y − x〉.

This simply reduces to the Euclidean norm, when using the standard inner product,
in which case the projection is called Euclidean projection.
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Projections

Theorem 2 (Projection Theorem)

Let X be an inner product space, let x be a given element in X , and let S be a subspace
of X . Then, there exists a unique vector x∗ ∈ S which is solution to the problem

min
y∈S
‖y − x‖.

Moreover, a necessary and sufficient condition for x∗ being the optimal solution for this
problem is that

x∗ ∈ S, (x − x∗) ⊥ S.

0
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Projections

Corollary 1 (Projection on affine set)

Let X be an inner product space, let x be a given element in X , and let A = x (0) + S be
the affine set obtained by translating a given subspace S by a given vector x (0). Then,
there exists a unique vector x∗ ∈ A which is solution to the problem

min
y∈A
‖y − x‖.

Moreover, a necessary and sufficient condition for x∗ to be the optimal solution for this
problem is that

x∗ ∈ A, (x − x∗) ⊥ S.

0
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Projections

Euclidean projection of a point onto a line

Let p ∈ Rn be a given point. We want to compute the Euclidean projection p∗ of p
onto a line L = {x0 + span(u)}, ‖u‖2 = 1:

p∗ = arg min
x∈L
‖x − p‖2.

Since any point x ∈ L can be written as x = x0 + v , for some v ∈ span(u), the
above problem is equivalent to finding a value v∗ for v , such that

v∗ = arg min
v∈span(u)

‖v − (p − x0)‖2.
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Projections

Euclidean projection of a point onto a line

The solution must satisfy the orthogonality condition (z − v∗)⊥u. Recalling that
v∗ = λ∗u and u>u = ‖u‖22 = 1, we hence have

u>z − u>v∗ = 0 ⇔ u>z − λ∗ = 0 ⇔ λ∗ = u>z = u>(p − x0).

The optimal point p∗ is thus given by

p∗ = x0 + v∗ = x0 + λ∗u = x0 + u>(p − x0)u,

The squared distance from p to the line is

‖p − p∗‖22 = ‖p − x0‖22 − λ∗2 = ‖p − x0‖22 − (u>(p − x0))2.
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Projections

Euclidean projection of a point onto an hyperplane

A hyperplane is an affine set defined as

H = {z ∈ Rn : a>z = b},

where a 6= 0 is called a normal direction of the hyperplane, since for any two vectors
z1, z2 ∈ H it holds that (z1 − z2)⊥a.

Given p ∈ Rn we want to determine the Euclidean projection p∗ of p onto H.

The projection theorem requires p − p∗ to be orthogonal to H. Since a is a
direction orthogonal to H, the condition (p − p∗)⊥H is equivalent to saying that
p − p∗ = αa, for some α ∈ R.
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Projections

Euclidean projection of a point onto an hyperplane

To find α, consider that p∗ ∈ H, thus a>p∗ = b, then consider the optimality
condition

p − p∗ = αa

and multiply it on the left by a>, obtaining

a>p − b = α‖a‖22

whereby

α =
a>p − b

‖a‖22
,

and

p∗ = p − a>p − b

‖a‖22
a.

The distance from p to H is

‖p − p∗‖2 = |α| · ‖a‖2 =
|a>p − b|
‖a‖2

.
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Projections

Projection on a vector span

Suppose we have a basis for a subspace S ⊆ X , that is

S = span(x (1), . . . , x (d)).

Given x ∈ X , the Projection Theorem states that the unique projection x∗ of x
onto S is characterized by (x − x∗) ⊥ S.

Since x∗ ∈ S, we can write x∗ as some (unknown) linear combination of the
elements in the basis of S, that is

x∗ =
d∑

i=1

αix
(i).

Then (x − x∗) ⊥ S ⇔ 〈x − x∗, x (k)〉 = 0, k = 1, . . . , d :

d∑
i=1

αi 〈x (k), x (i)〉 = 〈x (k), x〉, k = 1, . . . , d .

Solving this system of linear equations (aka the Gram equations) provides the
coefficients α, and hence the desired x∗.
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Projections

Projection onto the span of orthonormal vectors

If we have an orthonormal basis for a subspace S = span(S), then it is immediate
to obtain the projection x∗ of x onto that subspace.

This is due to the fact that, in this case, the Gram system of equations immediately
gives the coefficients

αk = 〈x (k), x〉, i = 1, . . . , d .

Therefore, we have that

x∗ =
d∑

i=1

〈x (i), x〉x (i).

Given a basis S = {x (1), . . . , x (d)} for a subspace S = span(S), there are numerical
procedures to construct an orthonormal basis for the same subspace (e.g., the
Gram-Schmidt procedure and QR factorization).
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Functions and maps

A function takes a vector argument in Rn, and returns a unique value in R.

We use the notation
f : Rn → R,

to refer to a function with “input” space Rn. The “output” space for functions is R.

For example, the function f : R2 → R with values

f (x) =
√

(x1 − y1)2 + (x2 − y2)2

gives the Euclidean distance from the point (x1, x2) to a given point (y1, y2).

We allow functions to take infinity values. The domain of a function f , denoted
dom f , is defined as the set of points where the function is finite.
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Functions and maps

We usually reserve the term map to refer to vector-valued functions.

That is, maps are functions that return more a vector of values. We use the
notation

f : Rn → Rm,

to refer to a map with input space Rn and output space Rm.

The components of the map f are the (scalar-valued) functions fi , i = 1, . . . ,m.
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Sets related to functions
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Consider a function f : Rn → R.

The graph and the epigraph of a function f : Rn → R are both subsets of Rn+1.

The graph of f is the set of input-output pairs that f can attain, that is:

graph f =
{

(x , f (x)) ∈ Rn+1 : x ∈ Rn
}
.

The epigraph, denoted epi f , describes the set of input-output pairs that f can
achieve, as well as “anything above”:

epi f =
{

(x , t) ∈ Rn+1 : x ∈ Rn, t ≥ f (x)
}
.
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Sets related to functions
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A level set (or contour line) is the set of points that achieve exactly some value for
the function f . For t ∈ R, the t-level set of the function f is defined as

Cf (t) = {x ∈ Rn : f (x) = t} .

The t-sublevel set of f is the set of points that achieve at most a certain value for f :

Lf (t) = {x ∈ Rn : f (x) ≤ t} .
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Linear and affine functions

Linear functions are functions that preserve scaling and addition of the input
argument.

A function f : Rn → R is linear if and only if

∀x ∈ Rn and α ∈ R, f (αx) = αf (x);

∀x1, x2 ∈ Rn, f (x1 + x2) = f (x1) + f (x2).

A function f is affine if and only if the function f̃ (x) = f (x)− f (0) is linear (affine
= linear + constant).

Consider the functions f1, f2, f3 : R2 → R defined below:

f1(x) = 3.2x1 + 2x2,

f2(x) = 3.2x1 + 2x2 + 0.15,

f3(x) = 0.001x2
2 + 2.3x1 + 0.3x2.

The function f1 is linear; f2 is affine; f3 is neither linear nor affine (f3 is a quadratic
function).
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Linear and affine functions

Linear or affine functions can be conveniently defined by means of the standard
inner product.

A function f : Rn → R is affine if and only if it can be expressed as

f (x) = a>x + b,

for some unique pair (a, b), with a in Rn and b ∈ R.

The function is linear if and only if b = 0.

Vector a ∈ Rn can thus be viewed as a (linear) map from the “input” space Rn to
the “output” space R.

For any affine function f , we can obtain a and b as follows: b = f (0), and
ai = f (ei )− b, i = 1, . . . , n.
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Hyperplanes and halfspaces

A hyperplane in Rn is a set of the form

H =
{
x ∈ Rn : a>x = b

}
,

where a ∈ Rn, a 6= 0, and b ∈ R are given.

0

Equivalently, we can think of hyperplanes as the level sets of linear functions.

When b = 0, the hyperplane is simply the set of points that are orthogonal to a
(i.e., H is a (n − 1)-dimensional subspace).
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Hyperplanes and halfspaces

An hyperplane H separates the whole space in two regions:

H− =
{
x : a>x ≤ b

}
, H++ =

{
x : a>x > b

}
.

These regions are called halfspaces (H− is a closed halfspace, H++ is an open
halfspace).

the halfspace H− is the region delimited by the hyperplane H = {a>x = b} and
lying in the direction opposite to vector a. Similarly, the halfspace H++ is the region
lying above (i.e., in the direction of a) the hyperplane.
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Gradients

The gradient of a function f : Rn → R at a point x where f is differentiable,
denoted with ∇f (x), is a column vector of first derivatives of f with respect to
x1, . . . , xn:

∇f (x) =
[

∂f (x)
∂x1

· · · ∂f (x)
∂xn

]>
.

When n = 1 (there is only one input variable), the gradient is simply the derivative.

An affine function f : Rn → R, represented as f (x) = a>x + b, has a very simple
gradient: ∇f (x) = a.

Example 4

The distance function ρ(x) = ‖x − p‖2 =
√∑n

i=1(xi − pi )2 has gradient

∇ρ(x) =
1

‖x − p‖2
(x − p).
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Affine approximation of nonlinear functions

A non-linear function f : Rn → R can be approximated locally via an affine
function, using a first-order Taylor series expansion.

Specifically, if f is differentiable at point x0, then for all points x in a neighborhood
of x0, we have that

f (x) = f (x0) +∇f (x0)>(x − x0) + ε(x),

where the error term ε(x) goes to zero faster than first order, as x → x0, that is

lim
x→x0

ε(x)

‖x − x0‖2
= 0.

In practice, this means that for x sufficiently close to x0, we can write the
approximation

f (x) ' f (x0) +∇f (x0)>(x − x0).
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Geometric interpretation of the gradient

The gradient of a function can be interpreted in the context of the level sets.

Indeed, geometrically, the gradient of f at a point x0 is a vector ∇f (x0)
perpendicular to the contour line of f at level α = f (x0), pointing from x0 outwards
the α-sublevel set (that is, it points towards higher values of the function).
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Geometric interpretation of the gradient

The gradient ∇f (x0) also represents the direction along which the function has the
maximum rate of increase (steepest ascent direction).

Let v be a unit direction vector (i.e., ‖v‖2 = 1), let ε ≥ 0, and consider moving
away at distance ε from x0 along direction v , that is, consider a point x = x0 + εv .
We have that

f (x0 + εv) ' f (x0) + ε∇f (x0)>v , for ε→ 0,

or, equivalently,

lim
ε→0

f (x0 + εv)− f (x0)

ε
= ∇f (x0)>v .

Whenever ε > 0 and v is such that ∇f (x0)>v > 0, then f is increasing along the
direction v , for small ε.

The inner product ∇f (x0)>v measures the rate of variation of f at x0, along
direction v , and it is usually referred to as the directional derivative of f along v .
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Geometric interpretation of the gradient

The rate of variation is thus zero, if v is orthogonal to ∇f (x0): along such a
direction the function value remains constant (to first order), that is, this direction
is tangent to the contour line of f at x0.

Contrary, the rate of variation is maximal when v is parallel to ∇f (x0), hence along
the normal direction to the contour line at x0.
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