Optimization Models

EECS 127 / EECS 227AT

Giuseppe Calafiore

EECS department
UC Berkeley

Fall 2017

LECTURE 2

Vectors and Functions

Mathematicians are like
Frenchmen: whatever you say to
them, they translate into their own
language, and turn it into something entirely different.

Goethe

Outline

(1) Introduction

- Basics
- Examples
- Vector spaces
(2) Inner product, angle, orthogonality
(3) Projections
(4) Functions and maps
- Hyperplanes and halfspaces
- Gradients

Introduction

- A vector is a collection of numbers, arranged in a column or a row, which can be thought of as the coordinates of a point in n-dimensional space.
- Equipping vectors with sum and scalar multiplication allows to define notions such as independence, span, subspaces, and dimension. Further, the scalar product introduces a notion of angle between two vectors, and induces the concept of length, or norm.
- Via the scalar product, we can also view a vector as a linear function. We can compute the projection of a vector onto a line defined by another vector, onto a plane, or more generally onto a subspace.
- Projections can be viewed as a first elementary optimization problem (finding the point in a given set at minimum distance from a given point), and they constitute a basic ingredient in many processing and visualization techniques for high-dimensional data.

Basics

Notation

- We usually write vectors in column format:

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Element x_{i} is said to be the i-th component (or the i-th element, or entry) of vector x, and the number n of components is usually referred to as the dimension of x.

- When the components of x are real numbers, i.e. $x_{i} \in \mathbb{R}$, then x is a real vector of dimension n, which we indicate with the notation $x \in \mathbb{R}^{n}$.
- We shall seldom need complex vectors, which are collections of complex numbers $x_{i} \in \mathbb{C}, i=1, \ldots, n$. We denote the set of such vectors by \mathbb{C}^{n}.
- To transform a column-vector x in row format and vice versa, we define an operation called transpose, denoted with a superscript ${ }^{\top}$:

$$
x^{\top}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right] ; \quad x^{\top \top}=x .
$$

Examples

Example 1 (Bag-of-words representations of text)

Consider the following text:

> " A (real) vector is just a collection of real numbers, referred to as the components (or, elements) of the vector; \mathbb{R}^{n} denotes the set of all vectors with n elements. If $x \in \mathbb{R}^{n}$ denotes a vector, we use subscripts to denote elements, so that x_{i} is the i-th component of x. Vectors are arranged in a column, or a row. If x is a column vector, x^{\top} denotes the corresponding row vector, and vice-versa."

- Row vector $c=[5,3,3,4]$ contains the number of times each word in the list $V=\{$ vector, elements, of, the $\}$ appears in the above paragraph.
- Dividing each entry in c by the total number of occurrences of words in the list (15, in this example), we obtain a vector $x=[1 / 3,1 / 5,1 / 5,4 / 15]$ of relative word frequencies.
- Frequency-based representation of text documents (bag-of-words).

Examples

Example 2 (Time series)

- A time series represents the evolution in (discrete) time of a physical or economical quantity.
- If $x(k), k=1, \ldots, T$, describes the numerical value of the quantity of interest at time k, then the whole time series, over the time horizon from 1 to T, can be represented as a T-dimensional vector x containing all the values of $x(k)$, for $k=1$ to $k=T$, that is

$$
x=[x(1) x(2) \cdots x(T)]^{\top} \in \mathbb{R}^{T} .
$$

Adjusted close price of the Dow Jones Industrial Average Index, over a 66 days period from April 19, 2012 to July 20, 2012.

Example 3 (Images)

We are given a gray-scale image where each pixel has a certain value representing the luminance level ($0=$ black). We can arrange the image as a vector of pixels.

Figure: Row vector representation of an image.

Vector spaces

- The operations of sum, difference and scalar multiplication are defined in an obvious way for vectors: for any two vectors $v^{(1)}, v^{(2)}$ having equal number of elements, we have that the sum $v^{(1)}+v^{(2)}$ is simply a vector having as components the sum of the corresponding components of the addends, and the same holds for the difference.
- If v is a vector and α is a scalar (i.e., a real or complex number), then αv is obtained multiplying each component of v by α. If $\alpha=0$, then αv is the zero vector, or origin.
- A vector space, \mathcal{X}, is obtained by equipping vectors with the operations of addition and multiplication by a scalar.
- A simple example of a vector space is $\mathcal{X}=\mathbb{R}^{n}$, the space of n-tuples of real numbers. A less obvious example is the set of single-variable polynomials of a given degree.

Subspaces and span

- A nonempty subset \mathcal{V} of a vector space \mathcal{X} is called a subspace of \mathcal{X} if, for any scalars α, β,

$$
x, y \in \mathcal{V} \Rightarrow \alpha x+\beta y \in \mathcal{V}
$$

In other words, \mathcal{V} is "closed" under addition and scalar multiplication.

- A linear combination of a set of vectors $S=\left\{x^{(1)}, \ldots, x^{(m)}\right\}$ in a vector space \mathcal{X} is a vector of the form $\alpha_{1} x^{(1)}+\cdots+\alpha_{m} x^{(m)}$, where $\alpha_{1}, \ldots, \alpha_{m}$ are given scalars.
- The set of all possible linear combinations of the vectors in $S=\left\{x^{(1)}, \ldots, x^{(m)}\right\}$ forms a subspace, which is called the subspace generated by S, or the span of S, denoted with $\operatorname{span}(S)$.
- Given two subspaces \mathcal{X}, \mathcal{Y} in \mathbb{R}^{n}, the direct sum of \mathcal{X}, \mathcal{Y}, which we denote by $\mathcal{X} \oplus \mathcal{Y}$, is the set of vectors of the form $x+y$, with $x \in \mathcal{X}, y \in \mathcal{Y}$. It is readily checked that $\mathcal{X} \oplus \mathcal{Y}$ is itself a subspace.

Bases and dimensions

- A collection $x^{(1)}, \ldots, x^{(m)}$ of vectors in a vector space \mathcal{X} is said to be linearly independent if no vector in the collection can be expressed as a linear combination of the others. This is the same as the condition

$$
\sum_{i=1}^{m} \alpha_{i} x^{(i)}=0 \Longrightarrow \alpha=0
$$

- Given a subspace \mathcal{S} of a vector space \mathcal{X}, a basis of \mathcal{S} is a set B of vectors of minimal cardinality, such that $\operatorname{span}(B)=\mathcal{S}$. The cardinality of a basis is called the dimension of \mathcal{S}.
- If we have a basis $\left\{x^{(1)}, \ldots, x^{(d)}\right\}$ for a subspace \mathcal{S}, then we can write any element in the subspace as a linear combination of elements in the basis. That is, any $x \in \mathcal{S}$ can be written as

$$
x=\sum_{i=1}^{d} \alpha_{i} x^{(i)}
$$

for appropriate scalars α_{i}

Affine sets

- An affine set is a set of the form

$$
\mathcal{A}=\left\{x \in \mathcal{X}: x=v+x^{(0)}, v \in \mathcal{V}\right\}
$$

where $x^{(0)}$ is a given point and \mathcal{V} is a given subspace of \mathcal{X}. Subspaces are just affine spaces containing the origin.

- Geometrically, an affine set is a flat passing through $x^{(0)}$. The dimension of an affine set \mathcal{A} is defined as the dimension of its generating subspace \mathcal{V}.
- A line is a one-dimensional affine set. The line through x_{0} along direction u is the set

$$
L=\left\{x \in \mathcal{X}: x=x_{0}+v, v \in \operatorname{span}(u)\right\}
$$

where in this case $\operatorname{span}(u)=\{\lambda u: \lambda \in \mathbb{R}\}$.

Euclidean length

- The Euclidean length of a vector $x \in \mathbb{R}^{n}$ is the square-root of the sum of squares of the components of x, that is

$$
\text { Euclidean length of } x \doteq \sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

This formula is an obvious extension to the multidimensional case of the Pythagoras theorem in \mathbb{R}^{2}.

- The Euclidean length represents the actual distance to be "travelled" for reaching point x from the origin 0 , along the most direct way (the straight line passing through 0 and x).

Basics

Norms and ℓ_{p} norms

- A norm on a vector space \mathcal{X} is a real-valued function with special properties that maps any element $x \in \mathcal{X}$ into a real number $\|x\|$.

Definition 1

A function from \mathcal{X} to \mathbb{R} is a norm, if

$$
\begin{aligned}
& \|x\| \geq 0 \forall x \in \mathcal{X}, \text { and }\|x\|=0 \text { if and only if } x=0 ; \\
& \|x+y\| \leq\|x\|+\|y\|, \text { for any } x, y \in \mathcal{X} \text { (triangle inequality); } \\
& \|\alpha x\|=\mid \alpha\|x\|, \text { for any scalar } \alpha \text { and any } x \in \mathcal{X} .
\end{aligned}
$$

- ℓ_{p} norms are defined as

$$
\|x\|_{p} \doteq\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p}, \quad 1 \leq p<\infty
$$

Basics

Norms and ℓ_{p} norms

- For $p=2$ we obtain the standard Euclidean length

$$
\|x\|_{2} \doteq \sqrt{\sum_{k=1}^{n} x_{k}^{2}}
$$

- or $p=1$ we obtain the sum-of-absolute-values length

$$
\|x\|_{1} \doteq \sum_{k=1}^{n}\left|x_{k}\right|
$$

- The limit case $p=\infty$ defines the ℓ_{∞} norm (max absolute value norm, or Chebyshev norm)

$$
\|x\|_{\infty} \doteq \max _{k=1, \ldots, n}\left|x_{k}\right| .
$$

- The cardinality of a vector x is often called the ℓ_{0} (pseudo) norm and denoted with $\|x\|_{0}$.

Inner product

- An inner product on a (real) vector space \mathcal{X} is a real-valued function which maps any pair of elements $x, y \in \mathcal{X}$ into a scalar denoted as $\langle x, y\rangle$. The inner product satisfies the following axioms: for any $x, y, z \in \mathcal{X}$ and scalar α

$$
\begin{aligned}
& \langle x, x\rangle \geq 0 ; \\
& \langle x, x\rangle=0 \text { if and only if } x=0 ; \\
& \langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle \\
& \langle\alpha x, y\rangle=\alpha\langle x, y\rangle \\
& \langle x, y\rangle=\langle y, x\rangle
\end{aligned}
$$

- A vector space equipped with an inner product is called an inner product space.
- The standard inner product defined in \mathbb{R}^{n} is the "row-column" product of two vectors

$$
\langle x, y\rangle=x^{\top} y=\sum_{k=1}^{n} x_{k} y_{k}
$$

- The inner product induces a norm: $\|x\|=\sqrt{\langle x, x\rangle}$.

Angle between vectors

- The angle between x and y is defined via the relation

$$
\cos \theta=\frac{x^{\top} y}{\|x\|_{2}\|y\|_{2}}
$$

- When $x^{\top} y=0$, the angle between x and y is $\theta= \pm 90^{\circ}$, i.e., x, y are orthogonal.
- When the angle θ is 0°, or $\pm 180^{\circ}$, then x is aligned with y, that is $y=\alpha x$, for some scalar α, i.e., x and y are parallel. In this situation $\left|x^{\top} y\right|$ achieves its maximum value $|\alpha|\|x\|_{2}^{2}$.

Cauchy-Schwartz and Hölder inequality

- Since $|\cos \theta| \leq 1$, it follows from the angle equation that

$$
\left|x^{\top} y\right| \leq\|x\|_{2}\|y\|_{2}
$$

and this inequality is known as the Cauchy-Schwartz inequality.

- A generalization of this inequality involves general ℓ_{p} norms and it is known as the Hölder inequality.
- For any vectors $x, y \in \mathbb{R}^{n}$ and for any $p, q \geq 1$ such that $1 / p+1 / q=1$, it holds that

$$
\left|x^{\top} y\right| \leq \sum_{k=1}^{n}\left|x_{k} y_{k}\right| \leq\|x\|_{p}\|y\|_{q}
$$

Maximization of inner product over norm balls

- Our first optimization problem:

$$
\max _{\|x\|_{p} \leq 1} x^{\top} y
$$

- For $p=2$:

$$
x_{2}^{*}=\frac{y}{\|y\|_{2}},
$$

hence $\max _{\|x\|_{2} \leq 1} x^{\top} y=\|y\|_{2}$.

- For $p=\infty$:

$$
x_{\infty}^{*}=\operatorname{sgn}(y)
$$

and $\max _{\|x\|_{\infty} \leq 1} x^{\top} y=\sum_{i=1}^{n}\left|y_{i}\right|=\|y\|_{1}$.

- For $p=1$:

$$
\left[x_{1}^{*}\right]_{i}=\left\{\begin{array}{ll}
\operatorname{sgn}\left(y_{i}\right) & \text { if } i=m \\
0 & \text { otherwise }
\end{array}, \quad i=1, \ldots, n\right.
$$

where m is an index such that $\left|y_{i}\right| \leq\left|y_{m}\right|$ for all i. We thus have $\max _{\|x\|_{1} \leq 1} x^{\top} y=\max _{i}\left|y_{i}\right|=\|y\|_{\infty}$.

Orthogonal vectors

- Generalizing the concept of orthogonality to generic inner product spaces, we say that two vectors x, y in an inner product space \mathcal{X} are orthogonal if $\langle x, y\rangle=0$. Orthogonality of two vectors $x, y \in \mathcal{X}$ is symbolized by $x \perp y$.
- Nonzero vectors $x^{(1)}, \ldots, x^{(d)}$ are said to be mutually orthogonal if $\left\langle x^{(i)}, x^{(j)}\right\rangle=0$ whenever $i \neq j$. In words, each vector is orthogonal to all other vectors in the collection.

Proposition 1

Mutually orthogonal vectors are linearly independent.

- A collection of vectors $S=\left\{x^{(1)}, \ldots, x^{(d)}\right\}$ is said to be orthonormal if, for $i, j=1, \ldots, d$,

$$
\left\langle x^{(i)}, x^{(j)}\right\rangle= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

In words, S is orthonormal if every element has unit norm, and all elements are orthogonal to each other. A collection of orthonormal vectors S forms an orthonormal basis for the span of S.

Orthogonal complement

- A vector $x \in \mathcal{X}$ is orthogonal to a subset \mathcal{S} of an inner product space \mathcal{X} if $x \perp s$ for all $s \in \mathcal{S}$.
- The set of vectors in \mathcal{X} that are orthogonal to \mathcal{S} is called the orthogonal complement of \mathcal{S}, and it is denoted with \mathcal{S}^{\perp};

Theorem 1 (Orthogonal decomposition)

If \mathcal{S} is a subspace of an inner-product space \mathcal{X}, then any vector $x \in \mathcal{X}$ can be written in a unique way as the sum of an element in \mathcal{S} and one in the orthogonal complement \mathcal{S}^{\perp} :

$$
\mathcal{X}=\mathcal{S} \oplus \mathcal{S}^{\perp} \quad \text { for any subspace } \mathcal{S} \subseteq \mathcal{X}
$$

Projections

- The idea of projection is central in optimization, and it corresponds to the problem of finding a point on a given set that is closest (in norm) to a given point.
- Given a vector x in an inner product space \mathcal{X} (say, e.g., $\mathcal{X}=\mathbb{R}^{n}$) and a closed set $\mathcal{S} \subseteq \mathcal{X}$, the projection of x onto \mathcal{S}, denoted as $\Pi_{\mathcal{S}}(x)$, is defined as the point in \mathcal{S} at minimal distance from x :

$$
\Pi_{\mathcal{S}}(x)=\arg \min _{y \in \mathcal{S}}\|y-x\|
$$

where the norm used here is the norm induced by the inner product, that is $\|y-x\|=\sqrt{\langle y-x, y-x\rangle}$.

- This simply reduces to the Euclidean norm, when using the standard inner product, in which case the projection is called Euclidean projection.

Projections

Theorem 2 (Projection Theorem)

Let \mathcal{X} be an inner product space, let x be a given element in \mathcal{X}, and let \mathcal{S} be a subspace of \mathcal{X}. Then, there exists a unique vector $x^{*} \in \mathcal{S}$ which is solution to the problem

$$
\min _{y \in \mathcal{S}}\|y-x\| .
$$

Moreover, a necessary and sufficient condition for x^{*} being the optimal solution for this problem is that

$$
x^{*} \in \mathcal{S}, \quad\left(x-x^{*}\right) \perp \mathcal{S} .
$$

Projections

Corollary 1 (Projection on affine set)

Let \mathcal{X} be an inner product space, let x be a given element in \mathcal{X}, and let $\mathcal{A}=x^{(0)}+\mathcal{S}$ be the affine set obtained by translating a given subspace \mathcal{S} by a given vector $x^{(0)}$. Then, there exists a unique vector $x^{*} \in \mathcal{A}$ which is solution to the problem

$$
\min _{y \in \mathcal{A}}\|y-x\|
$$

Moreover, a necessary and sufficient condition for x^{*} to be the optimal solution for this problem is that

$$
x^{*} \in \mathcal{A}, \quad\left(x-x^{*}\right) \perp \mathcal{S}
$$

Projections

Euclidean projection of a point onto a line

- Let $p \in \mathbb{R}^{n}$ be a given point. We want to compute the Euclidean projection p^{*} of p onto a line $L=\left\{x_{0}+\operatorname{span}(u)\right\},\|u\|_{2}=1$:

$$
p^{*}=\arg \min _{x \in L}\|x-p\|_{2}
$$

- Since any point $x \in L$ can be written as $x=x_{0}+v$, for some $v \in \operatorname{span}(u)$, the above problem is equivalent to finding a value v^{*} for v, such that

$$
v^{*}=\arg \min _{v \in \operatorname{Span}(u)}\left\|v-\left(p-x_{0}\right)\right\|_{2}
$$

Projections

Euclidean projection of a point onto a line

- The solution must satisfy the orthogonality condition $\left(z-v^{*}\right) \perp u$. Recalling that $v^{*}=\lambda^{*} u$ and $u^{\top} u=\|u\|_{2}^{2}=1$, we hence have

$$
u^{\top} z-u^{\top} v^{*}=0 \Leftrightarrow u^{\top} z-\lambda^{*}=0 \Leftrightarrow \lambda^{*}=u^{\top} z=u^{\top}\left(p-x_{0}\right)
$$

- The optimal point p^{*} is thus given by

$$
p^{*}=x_{0}+v^{*}=x_{0}+\lambda^{*} u=x_{0}+u^{\top}\left(p-x_{0}\right) u
$$

- The squared distance from p to the line is

$$
\left\|p-p^{*}\right\|_{2}^{2}=\left\|p-x_{0}\right\|_{2}^{2}-\lambda^{* 2}=\left\|p-x_{0}\right\|_{2}^{2}-\left(u^{\top}\left(p-x_{0}\right)\right)^{2} .
$$

Projections

Euclidean projection of a point onto an hyperplane

- A hyperplane is an affine set defined as

$$
H=\left\{z \in \mathbb{R}^{n}: a^{\top} z=b\right\}
$$

where $a \neq 0$ is called a normal direction of the hyperplane, since for any two vectors $z_{1}, z_{2} \in H$ it holds that $\left(z_{1}-z_{2}\right) \perp a$.

- Given $p \in \mathbb{R}^{n}$ we want to determine the Euclidean projection p^{*} of p onto H.
- The projection theorem requires $p-p^{*}$ to be orthogonal to H. Since a is a direction orthogonal to H, the condition $\left(p-p^{*}\right) \perp H$ is equivalent to saying that $p-p^{*}=\alpha a$, for some $\alpha \in \mathbb{R}$.

Projections

Euclidean projection of a point onto an hyperplane

- To find α, consider that $p^{*} \in H$, thus $a^{\top} p^{*}=b$, then consider the optimality condition

$$
p-p^{*}=\alpha a
$$

and multiply it on the left by a^{\top}, obtaining

$$
a^{\top} p-b=\alpha\|a\|_{2}^{2}
$$

whereby

$$
\alpha=\frac{a^{\top} p-b}{\|a\|_{2}^{2}}
$$

and

$$
p^{*}=p-\frac{a^{\top} p-b}{\|a\|_{2}^{2}} a
$$

- The distance from p to H is

$$
\left\|p-p^{*}\right\|_{2}=|\alpha| \cdot\|a\|_{2}=\frac{\left|a^{\top} p-b\right|}{\|a\|_{2}}
$$

Projections

Projection on a vector span

- Suppose we have a basis for a subspace $\mathcal{S} \subseteq \mathcal{X}$, that is

$$
\mathcal{S}=\operatorname{span}\left(x^{(1)}, \ldots, x^{(d)}\right)
$$

- Given $x \in \mathcal{X}$, the Projection Theorem states that the unique projection x^{*} of x onto \mathcal{S} is characterized by $\left(x-x^{*}\right) \perp \mathcal{S}$.
- Since $x^{*} \in \mathcal{S}$, we can write x^{*} as some (unknown) linear combination of the elements in the basis of \mathcal{S}, that is

$$
x^{*}=\sum_{i=1}^{d} \alpha_{i} x^{(i)}
$$

Then $\left(x-x^{*}\right) \perp \mathcal{S} \Leftrightarrow\left\langle x-x^{*}, x^{(k)}\right\rangle=0, k=1, \ldots, d$:

$$
\sum_{i=1}^{d} \alpha_{i}\left\langle x^{(k)}, x^{(i)}\right\rangle=\left\langle x^{(k)}, x\right\rangle, \quad k=1, \ldots, d
$$

- Solving this system of linear equations (aka the Gram equations) provides the coefficients α, and hence the desired x^{*}.

Projections

Projection onto the span of orthonormal vectors

- If we have an orthonormal basis for a subspace $\mathcal{S}=\operatorname{span}(S)$, then it is immediate to obtain the projection x^{*} of x onto that subspace.
- This is due to the fact that, in this case, the Gram system of equations immediately gives the coefficients

$$
\alpha_{k}=\left\langle x^{(k)}, x\right\rangle, \quad i=1, \ldots, d
$$

- Therefore, we have that

$$
x^{*}=\sum_{i=1}^{d}\left\langle x^{(i)}, x\right\rangle x^{(i)}
$$

- Given a basis $S=\left\{x^{(1)}, \ldots, x^{(d)}\right\}$ for a subspace $\mathcal{S}=\operatorname{span}(S)$, there are numerical procedures to construct an orthonormal basis for the same subspace (e.g., the Gram-Schmidt procedure and QR factorization).

Functions and maps

- A function takes a vector argument in \mathbb{R}^{n}, and returns a unique value in \mathbb{R}.
- We use the notation

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

to refer to a function with "input" space \mathbb{R}^{n}. The "output" space for functions is \mathbb{R}.

- For example, the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with values

$$
f(x)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}
$$

gives the Euclidean distance from the point $\left(x_{1}, x_{2}\right)$ to a given point $\left(y_{1}, y_{2}\right)$.

- We allow functions to take infinity values. The domain of a function f, denoted $\operatorname{dom} f$, is defined as the set of points where the function is finite.

Functions and maps

- We usually reserve the term map to refer to vector-valued functions.
- That is, maps are functions that return more a vector of values. We use the notation

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

to refer to a map with input space \mathbb{R}^{n} and output space \mathbb{R}^{m}.

- The components of the map f are the (scalar-valued) functions $f_{i}, i=1, \ldots, m$.

Sets related to functions

- Consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- The graph and the epigraph of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are both subsets of \mathbb{R}^{n+1}.
- The graph of f is the set of input-output pairs that f can attain, that is:

$$
\operatorname{graph} f=\left\{(x, f(x)) \in \mathbb{R}^{n+1}: x \in \mathbb{R}^{n}\right\}
$$

- The epigraph, denoted epi f, describes the set of input-output pairs that f can achieve, as well as "anything above":

$$
\text { epi } f=\left\{(x, t) \in \mathbb{R}^{n+1}: x \in \mathbb{R}^{n}, \quad t \geq f(x)\right\} .
$$

Sets related to functions

- A level set (or contour line) is the set of points that achieve exactly some value for the function f. For $t \in \mathbb{R}$, the t-level set of the function f is defined as

$$
C_{f}(t)=\left\{x \in \mathbb{R}^{n}: f(x)=t\right\}
$$

- The t-sublevel set of f is the set of points that achieve at most a certain value for f :

$$
L_{f}(t)=\left\{x \in \mathbb{R}^{n}: f(x) \leq t\right\}
$$

Linear and affine functions

- Linear functions are functions that preserve scaling and addition of the input argument.
- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is linear if and only if

$$
\begin{array}{r}
\forall x \in \mathbb{R}^{n} \text { and } \alpha \in \mathbb{R}, f(\alpha x)=\alpha f(x) \\
\forall x_{1}, x_{2} \in \mathbb{R}^{n}, f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right) .
\end{array}
$$

- A function f is affine if and only if the function $\tilde{f}(x)=f(x)-f(0)$ is linear (affine $=$ linear + constant).
- Consider the functions $f_{1}, f_{2}, f_{3}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined below:

$$
\begin{aligned}
f_{1}(x) & =3.2 x_{1}+2 x_{2} \\
f_{2}(x) & =3.2 x_{1}+2 x_{2}+0.15 \\
f_{3}(x) & =0.001 x_{2}^{2}+2.3 x_{1}+0.3 x_{2}
\end{aligned}
$$

The function f_{1} is linear; f_{2} is affine; f_{3} is neither linear nor affine (f_{3} is a quadratic function).

Linear and affine functions

- Linear or affine functions can be conveniently defined by means of the standard inner product.
- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is affine if and only if it can be expressed as

$$
f(x)=a^{\top} x+b
$$

for some unique pair (a, b), with a in \mathbb{R}^{n} and $b \in \mathbb{R}$.

- The function is linear if and only if $b=0$.
- Vector $a \in \mathbb{R}^{n}$ can thus be viewed as a (linear) map from the "input" space \mathbb{R}^{n} to the "output" space \mathbb{R}.
- For any affine function f, we can obtain a and b as follows: $b=f(0)$, and $a_{i}=f\left(e_{i}\right)-b, i=1, \ldots, n$.

Hyperplanes and halfspaces

- A hyperplane in \mathbb{R}^{n} is a set of the form

$$
H=\left\{x \in \mathbb{R}^{n}: a^{\top} x=b\right\}
$$

where $a \in \mathbb{R}^{n}, a \neq 0$, and $b \in \mathbb{R}$ are given.

- Equivalently, we can think of hyperplanes as the level sets of linear functions.
- When $b=0$, the hyperplane is simply the set of points that are orthogonal to a (i.e., H is a $(n-1)$-dimensional subspace).

Hyperplanes and halfspaces

- An hyperplane H separates the whole space in two regions:

$$
H_{-}=\left\{x: a^{\top} x \leq b\right\}, \quad H_{++}=\left\{x: a^{\top} x>b\right\} .
$$

- These regions are called halfspaces $\left(H_{-}\right.$is a closed halfspace, H_{++}is an open halfspace).
- the halfspace H_{-}is the region delimited by the hyperplane $H=\left\{a^{\top} x=b\right\}$ and lying in the direction opposite to vector a. Similarly, the halfspace H_{++}is the region lying above (i.e., in the direction of a) the hyperplane.

Gradients

- The gradient of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at a point x where f is differentiable, denoted with $\nabla f(x)$, is a column vector of first derivatives of f with respect to x_{1}, \ldots, x_{n} :

$$
\nabla f(x)=\left[\begin{array}{lll}
\frac{\partial f(x)}{\partial x_{1}} & \cdots & \frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]^{\top} .
$$

- When $n=1$ (there is only one input variable), the gradient is simply the derivative.
- An affine function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, represented as $f(x)=a^{\top} x+b$, has a very simple gradient: $\nabla f(x)=a$.

Example 4

The distance function $\rho(x)=\|x-p\|_{2}=\sqrt{\sum_{i=1}^{n}\left(x_{i}-p_{i}\right)^{2}}$ has gradient

$$
\nabla \rho(x)=\frac{1}{\|x-p\|_{2}}(x-p)
$$

Affine approximation of nonlinear functions

- A non-linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be approximated locally via an affine function, using a first-order Taylor series expansion.
- Specifically, if f is differentiable at point x_{0}, then for all points x in a neighborhood of x_{0}, we have that

$$
f(x)=f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{\top}\left(x-x_{0}\right)+\epsilon(x)
$$

where the error term $\epsilon(x)$ goes to zero faster than first order, as $x \rightarrow x_{0}$, that is

$$
\lim _{x \rightarrow x_{0}} \frac{\epsilon(x)}{\left\|x-x_{0}\right\|_{2}}=0
$$

- In practice, this means that for x sufficiently close to x_{0}, we can write the approximation

$$
f(x) \simeq f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{\top}\left(x-x_{0}\right)
$$

Geometric interpretation of the gradient

- The gradient of a function can be interpreted in the context of the level sets.
- Indeed, geometrically, the gradient of f at a point x_{0} is a vector $\nabla f\left(x_{0}\right)$ perpendicular to the contour line of f at level $\alpha=f\left(x_{0}\right)$, pointing from x_{0} outwards the α-sublevel set (that is, it points towards higher values of the function).

Geometric interpretation of the gradient

- The gradient $\nabla f\left(x_{0}\right)$ also represents the direction along which the function has the maximum rate of increase (steepest ascent direction).
- Let v be a unit direction vector (i.e., $\|v\|_{2}=1$), let $\epsilon \geq 0$, and consider moving away at distance ϵ from x_{0} along direction v, that is, consider a point $x=x_{0}+\epsilon v$. We have that

$$
f\left(x_{0}+\epsilon v\right) \simeq f\left(x_{0}\right)+\epsilon \nabla f\left(x_{0}\right)^{\top} v, \text { for } \epsilon \rightarrow 0
$$

or, equivalently,

$$
\lim _{\epsilon \rightarrow 0} \frac{f\left(x_{0}+\epsilon v\right)-f\left(x_{0}\right)}{\epsilon}=\nabla f\left(x_{0}\right)^{\top} v
$$

- Whenever $\epsilon>0$ and v is such that $\nabla f\left(x_{0}\right)^{\top} v>0$, then f is increasing along the direction v, for small ϵ.
- The inner product $\nabla f\left(x_{0}\right)^{\top} v$ measures the rate of variation of f at x_{0}, along direction v, and it is usually referred to as the directional derivative of f along v.

Geometric interpretation of the gradient

- The rate of variation is thus zero, if v is orthogonal to $\nabla f\left(x_{0}\right)$: along such a direction the function value remains constant (to first order), that is, this direction is tangent to the contour line of f at x_{0}.
- Contrary, the rate of variation is maximal when v is parallel to $\nabla f\left(x_{0}\right)$, hence along the normal direction to the contour line at x_{0}.

