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LECTURE 3

Matrices and Linear Maps

The Matrix is everywhere. It is all
around us.

Morpheus
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Introduction

A matrix is a collection of numbers, arranged in columns and rows in a tabular
format.

Suitably defining operations such as sum, product and norms on matrices, we can
treat matrices as elements of a vector space.

A matrix defines a linear map between an input and an output space. This leads to
the introduction of concepts such as range, rank, nullspace, eigenvalues and
eigenvectors, that permit a complete analysis of (finite dimensional) linear maps.

Matrices are an ubiquitous tool in engineering for organizing and manipulating data.
They constitute the fundamental building block of numerical computation methods.
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A data matrix

Figure: Votes of US Senators, 2002-2004.

Is there anything beyond just an array of numbers?
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Basics

We shall mainly deal with matrices whose elements are real (or sometimes complex)
numbers, that is with arrays of the form

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .
This matrix has m rows and n columns.

In the case of real elements, we say that A ∈ Rm,n, resp. A ∈ Cm,n in the case of
complex elements.

The i-th row of A is the (row) vector [ai1 · · · ain]; the j-th column of A is the
(column) vector [a1j · · · amj ]

>.

The transposition operation works on matrices by exchanging rows and columns,
that is

[A>]ij = [A]ji ,

where the notation [A]ij (or sometimes also simply Aij) refers to the element of A
positioned in row i and column j .
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Example

Matrices for networks

A network can be represented as a graph of m nodes connected by n directed arcs. Here,
we assume that arcs are ordered pairs of nodes, with at most one arc joining any two
nodes; we also assume that there are no self-loops (arcs from a node to itself).

We can fully describe such kind of network via the so-called (directed) arc-node
incidence matrix, which is an m × n matrix defined as follows:

Aij =


1 if arc j starts at node i
−1 if arc j ends at node i
0 otherwise.

, 1 ≤ i ≤ m, 1 ≤ j ≤ n. (1)
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Example

Matrices for networks: example
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A network with m = 6 nodes and n = 8 arcs, with (directed) arc-node incidence matrix

A =


1 1 0 0 0 0 0 −1
−1 0 1 0 0 0 0 1
0 −1 −1 −1 1 1 0 0
0 0 0 1 0 0 −1 0
0 0 0 0 0 −1 1 0
0 0 0 0 −1 0 0 0

 .
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Basics

Matrix products

Two matrices can be multiplied if conformably sized, i.e., if A ∈ Rm,n and B ∈ Rn,p,
then the matrix product AB ∈ Rm,p is defined as a matrix whose (i , j)-th entry is

[AB]ij =
n∑

k=1

AikBkj .

The matrix product is non-commutative, meaning that, in general, AB 6= BA.

The n × n identity matrix (often denoted In, or simply I , depending on context), is
a matrix with all zero elements, except for the elements on the diagonal (that is,
the elements with row index equal to the column index), which are equal to one.
This matrix satisfies AIn = A for every matrix A with n columns, and InB = B for
every matrix B with n rows.

Fa18 9 / 40



Basics

Matrix-vector product

Let A ∈ Rm,n be a matrix with columns a1, . . . , an ∈ Rm and b ∈ Rn a vector. We
define the matrix-vector product by

Ab =
n∑

k=1

akbk , A ∈ Rm,n, b ∈ Rn.

That is, Ab is a vector in Rm obtained by forming a linear combination of the
columns of A, using the elements in b as coefficients.

Similarly, we can multiply matrix A ∈ Rm,n on the left by (the transpose of) vector
c ∈ Rm as follows

c>A =
m∑

k=1

ckα
>
k , A ∈ Rm,n, c ∈ Rm.

That is, c>A is a vector in R1,n obtained by forming a linear combination of the
rows αk of A, using the elements in c as coefficients.
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Matrix-vector product

For a network incidence matrix
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We describe a flow (of goods, traffic, charge,
information, etc) across the network as a
vector x ∈ Rn, where the j-th component of
x denotes the amount flowing through arc j .
By convention, we use positive values when
the flow is in the direction of the arc, and
negative ones in the opposite case.

The total flow leaving a given node i is then

n∑
j=1

Aijxj = [Ax ]i ,

where [Ax ]i denotes the i-th component of vector Ax .
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Basics

Matrix products

A matrix A ∈ Rm,n can also be seen as a collection of columns, each column being
a vector, or as a collection of rows, each row being a (transposed) vector:

A =
[
a1 a2 · · · an

]
, or A =


α>1
α>2

...
α>m

 ,
where a1, . . . , an ∈ Rm denote the columns of A, and α>1 , . . . , α

>
m ∈ Rn denote the

rows of A.

If the columns of B are given by the vectors bi ∈ Rn, i = 1, . . . , p, so that
B = [b1 · · · bp], then AB can be written as

AB = A
[
b1 . . . bp

]
=
[
Ab1 . . . Abp

]
.

In other words, AB results from transforming each column bi of B into Abi .
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Basics

Matrix products

The matrix-matrix product can also be interpreted as an operation on the rows of
A. Indeed, if A is given by its rows α>i , i = 1, . . . ,m, then AB is the matrix
obtained by transforming each one of these rows into α>i B, i = 1, . . . ,m:

AB =

 α>1
...
α>m

B =

 α>1 B
...

α>mB

 .
Finally, the product AB can be given the interpretation as the sum of so-called
dyadic matrices (matrices of rank one, of the form aiβ

>
i , where β>i denote the rows

of B:

AB =
n∑

i=1

aiβ
>
i , A ∈ Rm,n,B ∈ Rn,p.

For any two conformably sized matrices A,B, it holds that

(AB)> = B>A>,
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Matrices as linear maps

We can interpret matrices as linear maps (vector-valued functions), or “operators,”
acting from an “input” space to an “output” space.

We recall that a map f : X → Y is linear if any points x and z in X and any scalars
λ, µ satisfy f (λx + µz) = λf (x) + µf (z).

Any linear map f : Rn → Rm can be represented by a matrix A ∈ Rm,n, mapping
input vectors x ∈ Rn to output vectors y ∈ Rm:

y = Ax .

Affine maps are simply linear functions plus a constant term, thus any affine map
f : Rn → Rm can be represented as

f (x) = Ax + b,

for some A ∈ Rm,n, b ∈ Rm.
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Range, rank, and nullspace

Consider a m × n matrix A, and denote by ai , i = 1, . . . , n, its i-th column, so that
A = [a1 . . . an].

The set of vectors y obtained as a linear combination of the ai ’s are of the form
y = Ax for some vector x ∈ Rn. This set is commonly known as the range of A,
and is denoted R(A):

R(A) = {Ax : x ∈ Rn} .

By construction, the range is a subspace. The dimension of R(A) is called the rank
of A and denoted with rank(A); by definition the rank represents the number of
linearly independent columns of A.

The rank is also equal to the number of linearly independent rows of A; that is, the
rank of A is the same as that of its transpose A>. Proof here:
https://en.wikipedia.org/wiki/Rank_(linear_algebra)

As a consequence, we always have the bounds 1 ≤ rank(A) ≤ min(m, n).
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Range, rank, and nullspace

The nullspace of the matrix A ∈ Rm,n is the set of vectors in the input space that
are mapped to zero, and is denoted N (A):

N (A) = {x ∈ Rn : Ax = 0} .

This set is again a subspace.

R(A>) and N (A) are mutually orthogonal subspaces, i.e., N (A)⊥R(A>).

The direct sum of a subspace and its orthogonal complement equals the whole
space, thus,

Rn = N (A)⊕N (A)⊥ = N (A)⊕R(A>).
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Fundamental theorem of linear algebra

Theorem 1

For any given matrix A ∈ Rm,n, it holds that N (A)⊥R(A>) and R(A)⊥N (A>), hence

N (A)⊕R(A>) = Rn

R(A)⊕N (A>) = Rm.

Consequently, we can decompose any vector x ∈ Rn as the sum of two vectors
orthogonal to each other, one in the range of A>, and the other in the nullspace of A:

x = A>ξ + z , z ∈ N (A).

Similarly, we can decompose any vector w ∈ Rm as the sum of two vectors orthogonal to
each other, one in the range of A, and the other in the nullspace of A>:

w = Aϕ+ ζ, ζ ∈ N (A>).
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Fundamental theorem of linear algebra

Geometry

Figure: Illustration of the fundamental theorem of linear algebra in R3. Here, A = [a1 a2].
Any vector in R3 can be written as the sum of two orthogonal vectors, one in the range
of A, the other in the nullspace of A>.
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Determinants

The determinant of a generic (square) matrix A ∈ Rn,n can be computed by
defining det a = a for a scalar a, and then applying the following inductive formula
(Laplace’s determinant expansion):

det(A) =
n∑

j=1

(−1)i+jaij detA(i,j),

where i is any row, chosen at will (e.g., one may choose i = 1), and A(i,j) denotes a
(n− 1)× (n− 1) submatrix of A obtained by eliminating row i and column j from A.

A ∈ Rn,n is singular ⇔ detA = 0 ⇔ N (A) is not equal to {0}.

For any square matrices A,B ∈ Rn,n and scalar α:

detA = detA>

detAB = detBA = detA detB

detαA = αn detA.
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Determinant

Geometry

Figure: Linear mapping of the unit square. The absolute value of the determinant equals
the area of the transformed unit square.

Fa18 20 / 40



Matrix inverses

If A ∈ Rn,n is nonsingular (i.e., detA 6= 0), then we define the inverse matrix A−1 as
the unique n × n matrix such that

AA−1 = A−1A = In.

If A,B are square and nonsingular, then it holds for the inverse of the product that
(AB)−1 = B−1A−1.

If A is square and nonsingular, then

(A>)−1 = (A−1)>

detA = detA> =
1

detA−1
.

For a generic matrix A ∈ Rm,n, a generalized inverse (or, pseudoinverse) can be
defined:

if m ≥ n, then Ali is a left inverse of A, if AliA = In.

if n ≥ m, then Ari is a right inverse of A, if AAri = Im.

In general, matrix Api is a pseudoinverse of A, if AApiA = A.
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Similar matrices

Two matrices A,B ∈ Rn,n are said to be similar if there exist a nonsingular matrix
P ∈ Rn,n such that

B = P−1AP.

Similar matrices are related to different representation of the same linear map,
under a change of basis in the underlying space.

Consider the linear map y = Ax mapping Rn into itself. Since P ∈ Rn,n is
nonsingular, its columns are linearly independent, hence they represent a basis for
Rn. Vectors x and y can thus be represented in this basis as linear combinations of
the columns of P, that is there exist vectors x̃ , ỹ such that

x = Px̃ , y = Pỹ .

Writing the relation y = Ax , substituting the representations of x , y in the new
basis, we obtain

Pỹ = APx̃ ⇒ ỹ = P−1APx̃ = Bx̃ ,

that is, matrix B = P−1AP represents the linear map y = Ax , in the new basis
defined by the columns of P.
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Eigenvalues/eigenvectors

We say that λ ∈ C is an eigenvalue of matrix A ∈ Rn,n, and u ∈ Cn is a
corresponding eigenvector, if it holds that

Au = λu, u 6= 0,

or, equivalently, (λIn − A)u = 0 , u 6= 0.

Eigenvalues can be characterized as those real or complex numbers that satisfy the
equation

p(λ)
.

= det(λIn − A) = 0,

where p(λ) is a polynomial of degree n in λ, known as the characteristic polynomial
of A.

Any matrix A ∈ Rn,n has n eigenvalues λi , i = 1, . . . , n, counting multiplicities.

To each distinct eigenvalue λi , i = 1, . . . , k, there corresponds a whole subspace
φi

.
= N (λi In − A) of eigenvectors associated to this eigenvalue, called the

eigenspace.
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Diagonalizable matrices

Theorem 2

Let λi , i = 1, . . . , k ≤ n, be the distinct eigenvalues of A ∈ Rn,n,
let µi , i = 1, . . . , k, denote the corresponding algebraic multiplicities,
let φi = N (λi In − A), and U(i) = [u

(i)
1 · · · u

(i)
νi ] be a matrix containing by columns a

basis of φi , being νi
.

= dimφi .
It holds that νi ≤ µi and, if νi = µi , i = 1, . . . , k, then

U = [U(1) · · ·U(k)]

is invertible, and
A = UΛU−1

where

Λ =


λ1Iµ1 0 · · · 0

0 λ2Iµ2 · · · 0
...

...
. . .

...
0 · · · 0 λk Iµk

 .
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Eigenvectors and Google’s PageRank

The effectiveness of Google’s search engine largely relies on its PageRank (so
named after Google’s founder Larry Page) algorithm, which quantitatively ranks the
importance of each page on the web, allowing Google to present to the user the
more important (and typically most relevant and helpful) pages first.

If the web of interest is composed of n pages, each labelled with integer k,
k = 1, . . . , n, we can model this web as a directed graph, where pages are the nodes
of the graph, and a directed edge exists pointing from node k1 to node k2 if the
web page k1 contains a link to k2.

We denote by xk , k = 1, . . . , n the importance score of page k.
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Eigenvectors and Google’s PageRank

Each page j has a score xj and nj outgoing links; as an assumption, we do not allow
links from a page to itself, and we do not allow for dangling pages, that is pages
with no outgoing links, therefore nj > 0 for all j .

The score xj represents the total “voting‘” power of node j , which is to be evenly
subdivided among the nj outgoing links; each outgoing link thus carries xj/nj units
of vote.

Let Bk denote the set of labels of the pages that point to page k, i.e., Bk is the set
of backlinks for page k. Then, the score of page k is computed as

xk =
∑
j∈Bk

xj
nj
, k = 1, . . . , n.
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Eigenvectors and Google’s PageRank

For the example in the figure, we have n1 = 3, n2 = 2, n3 = 1, n4 = 2, hence

x1 = x3 +
1

2
x4

x2 =
1

3
x1

x3 =
1

3
x1 +

1

2
x2 +

1

2
x4

x4 =
1

3
x1 +

1

2
x2.
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Eigenvectors and the Google PageRank

We can write this system of equations in compact form exploiting the matrix-vector
product rule, as follows

x = Ax , A =


0 0 1 1

2
1
3

0 0 0
1
3

1
2

0 1
2

1
3

1
2

0 0

 , x =


x1
x2
x3
x4

 .
Computing the web pages’ scores thus amounts to finding x such that Ax = x : this
is an eigenvalue/eigenvector problem and, in particular, x is an eigenvector of A
associated with the eigenvalue λ = 1. A is called the link matrix of the network.

In this example, the eigenspace φ1 = N (In − A) associated with the eigenvalue
λ = 1 has dimension one, and it is given by

φ1 = N (In − A) = span
([

12 4 9 6
]>)

Page 1 thus appears to be the most relevant, according to the PageRank scoring.
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Matrices with special structure

Square, diagonal, triangular (upper or lower)

Symmetric: a square matrix A such that A = A>

Orthogonal: a square matrix A such that AA> = A>A = I

Dyad: a rank-one matrix A, which can be written as A = uv>, where u, v are
vectors

Block-structured matrices: block diagonal, block triangular, etc.
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Matrix factorizations

Given a matrix A ∈ Rm,n, write this matrix as the product of two or more matrices
with special structure.

Usually, once a matrix is suitably factorized, several quantities of interest become
readily accessible, and subsequent computations are greatly simplified.

In terms of the linear map defined by a matrix A, a factorization can be interpreted
as a decomposition of the map into a series of successive stages.
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Matrix factorizations
More on this later

Orthogonal-triangular decomposition (QR). Any square A ∈ Rn,n can be
decomposed as

A = QR,

where Q is an orthogonal matrix, and R is an upper triangular matrix. If A is
nonsingular, then the factors Q,R are uniquely defined, if the diagonal elements in
R are imposed to be positive.

Singular value decomposition (SVD). Any non-zero A ∈ Rm,n can be decomposed as

A = UΣ̃V>,

where V ∈ Rn,n and U ∈ Rm,m are orthogonal matrices, and

Σ̃ =

[
Σ 0r,n−r

0m−r,r 0m−r,n−r

]
, Σ = diag (σ1, . . . , σr ) ,

where r is the rank of A, and the scalars σi > 0, i = 1, . . . , r , are called the singular
values of A. The first r columns u1, . . . , ur of U (resp. v1, . . . , vr of V ) are called
the left (resp. right) singular vectors, and satisfy

Avi = σiui , A>ui = σivi , i = 1, . . . , r .

Fa18 31 / 40



Matrix norms

A function f : Rm,n → R is a matrix norm if, analogously to the vector case, it
satisfies three standard axioms. Namely, for all A,B ∈ Rm,n and all α ∈ R:

I f (A) ≥ 0, and f (A) = 0 if and only if A = 0;
I f (αA) = |α|f (A);
I f (A + B) ≤ f (A) + f (B).

Many of the popular matrix norms also satisfy a fourth condition called
sub-multiplicativity: for any conformably sized matrices A,B

f (AB) ≤ f (A)f (B).
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Matrix norms

Frobenius norm

The Frobenius norm ‖A‖F is nothing but the standard Euclidean (`2) vector norm
applied to the vector formed by all elements of A ∈ Rm,n:

‖A‖F =
√
traceAA> =

√√√√ m∑
i=1

n∑
j=1

|aij |2.

The Frobenius norm also has an interpretation in terms of the eigenvalues of the
symmetric matrix AA>:

‖A‖F =
√
traceAA> =

√√√√ m∑
i=1

λi (AA>).

For any x ∈ Rn, it holds that ‖Ax‖2 ≤ ‖A‖F‖x‖2. (this is a consequence of the
Cauchy-Schwartz inequality applied to |a>i x |).

The Frobenius norm is sub-multiplicative: for any B ∈ Rn,p, it holds that

‖AB‖F ≤ ‖A‖F‖B‖F .
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Matrix norms

Operator norms

The so-called operator norms give a characterization of the maximum input-output
gain of the linear map u → y = Au. Choosing to measure both inputs and outputs
in terms of a given `p norm, with typical values p = 1, 2,∞, leads to the definition

‖A‖p
.

= max
u 6=0

‖Au‖p
‖u‖p

= max
‖u‖=1

‖Au‖p,

By definition, for every u, ‖Au‖p ≤ ‖A‖p‖u‖p. From this property follows that any
operator norm is sub-multiplicative, that is, for any two conformably sized matrices
A,B, it holds that

‖AB‖p ≤ ‖A‖p‖B‖p.

This fact is easily seen by considering the product AB as the series connection of
the two operators B,A:

‖Bu‖p ≤ ‖B‖p‖u‖p, ‖ABu‖p ≤ ‖A‖p‖Bu‖p ≤ ‖A‖p‖B‖p‖u‖p,
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Matrix norms

Operator norms
For the typical values of p = 1, 2,∞, we have the following results:

The `1-induced norm corresponds to the largest absolute column sum:

‖A‖1 = max
‖u‖1=1

‖Au‖1 = max
j=1,...,n

m∑
i=1

|aij |.

The `∞-induced norm corresponds to the largest absolute row sum:

‖A‖∞ = max
‖u‖∞=1

‖Au‖∞ = max
i=1,...,m

n∑
j=1

|aij |.

The `2-induced norm (sometimes referred to as the spectral norm) corresponds to
the square-root of the largest eigenvalue λmax of A>A:

‖A‖2 = max
‖u‖2=1

‖Au‖2 =
√
λmax(A>A).

The latter identity follows from the variational characterization of the eigenvalues of
a symmetric matrix. In lecture 5 we revisit this.
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Spectral radius

The spectral radius ρ(A) of a matrix A ∈ Rn,n is defined as the maximum modulus
of the eigenvalues of A, that is

ρ(A)
.

= max
i=1,...,n

|λi (A)|.

Clearly, ρ(A) ≥ 0 for all A, and A = 0 implies ρ(A) = 0. However, the converse is
not true, since ρ(A) = 0 does not imply necessarily that A = 0, hence ρ(A) is not a
matrix norm.

However, for any induced matrix norm ‖ · ‖p, it holds that

ρ(A) ≤ ‖A‖p.

It follows, in particular, that ρ(A) ≤ min(‖A‖1, ‖A‖∞), that is ρ(A) is no larger
than the maximum row or column sum of |A| (the matrix whose entries are the
absolute values of the entries in A).
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Matrix functions

Matrix powers and polynomials

The integer power function

f (X ) = X k , k = 0, 1, . . .

can be quite naturally defined via the matrix product, by observing that
X k = XX · · ·X (k times; we take the convention that X 0 = In).

Similarly, negative integer power functions can be defined over nonsingular matrices
as integer powers of the inverse:

f (X ) = X−k = (X−1)k , k = 0, 1, . . .

A polynomial matrix function of degree m ≥ 0 can hence be naturally defined as

p(X ) = amX
m + am−1X

m−1 + · · ·+ a1X + a0In,

where ai , i = 0, 1, . . . ,m, are the scalar coefficients of the polynomial.
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Matrix functions

Diagonal factorization of a matrix polynomial

Let X ∈ Rn,n admit a diagonal factorization

X = UΛU−1,

where Λ is a diagonal matrix containing the eigenvalues of X , and U is a matrix
containing by columns the corresponding eigenvectors. Let p(t), t ∈ R, be a
polynomial

p(t) = amt
m + am−1t

m−1 + · · ·+ a1t + a0.

Then,
p(X ) = Up(Λ)U−1,

where
p(Λ) = diag (p(λ1), . . . , p(λn)) .

More generally, if λ, u is an eigenvalue/eigenvector pair for X , then

p(X )u = p(λ)u.
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Matrix functions

Non-polynomial matrix functions

Let f : R → R be an analytic function, that is, a function which is locally
representable by a power series f (t) =

∑∞
k=0 akt

k , which is convergent for all t such
that |t| ≤ R, R > 0.

If ρ(X ) < R (where ρ(X ) is the spectral radius of X ), then the value of the matrix
function f (X ) can be defined as the sum of the convergent series

f (X ) =
∞∑
k=0

akX
k .

Moreover, if X is diagonalizable, then X = UΛU−1, and

f (X ) =
∞∑
k=0

akX
k = Uf (Λ)U−1.

This equation states in particular that the spectrum (i.e., the set of eigenvalues) of
f (A) is the image of the spectrum of A under f . This fact is known as the spectral
mapping theorem.
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Matrix functions

Examples

The matrix exponential: the function f (t) = et has a power series representation
which is globally convergent

et =
∞∑
k=0

1

k!
tk ,

hence, for any diagonalizable X ∈ Rn,n, we have

eX
.

=
∞∑
k=0

1

k!
X k = Udiag

(
eλ1 , . . . , eλn

)
U−1.

Another example is given by the geometric series

f (t) = (1− t)−1 =
∞∑
k=0

tk , for |t| < 1 = R,

from which we obtain that

f (X ) = (I − X )−1 =
∞∑
k=0

X k , for ρ(X ) < 1.
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