Optimization Models EECS 127 / EECS 227AT

Laurent El Ghaoui

EECS department UC Berkeley

Fall 2018

・ロト・日本・日本・日本・日本・日本

Fa18

LECTURE 4

Matrices (II)

I have in previous papers defined a "Matrix" as a rectangular array of terms, out of which different systems of determinants may be engendered as from the womb of a common parent.

イロト イヨト イヨト イヨト

J.J. Sylvester (1814 - 1897)

Outline

Orthogonalization: Gram-Schmidt Procedure

- Orthogonalization
- Projection on a line
- Gram-Schmidt procedure

QR Decomposition

- Basic idea
- Full column rank case
- General case

Ea18

Orthonormal basis

A basis $(u_i)_{i=1}^n$ is said to be /orthogonal/ if $u_i^T u_j = 0$ if $i \neq j$. If in addition, $||u_i||_2 = 1$, we say that the basis is *orthonormal*.

Example: An orthonormal basis in \mathbb{R}^3 . The collection of vectors $\{u_1, u_2\}$, with

$$u_1 = rac{1}{\sqrt{2}} \left(egin{array}{c} 1 \\ 1 \end{array}
ight), \quad u_2 = rac{1}{\sqrt{2}} \left(egin{array}{c} 1 \\ -1 \end{array}
ight),$$

forms an orthonormal basis of \mathbf{R}^2 .

What is orthogonalization?

Orthogonalization refers to a procedure that finds an orthonormal basis of the span of given vectors.

Given vectors $a_1, \ldots, a_k \in \mathbf{R}^n$, an orthogonalization procedure computes vectors $q_1, \ldots, q_n \in \mathbf{R}^n$ such that

$$S := \operatorname{span} \{a_1, \ldots, a_k\} = \operatorname{span} \{q_1, \ldots, q_r\},$$

where r is the dimension of S, and

$$q_i^T q_j = 1$$
 $(i \neq j), q_i^T q_i = 1, 1 \le i, j \le r.$

That is, the vectors (q_1, \ldots, q_r) form an orthonormal basis for the span of the vectors a_1, \ldots, a_k .

Projection on a line

A basic step in the procedure consists in projecting a vector on a line passing through zero. Consider the line

$$L(q):=\left\{tq : t\in \mathbf{R}\right\},$$

where $q \in \mathbf{R}^n$ is given, and normalized $(||q||_2 = 1)$.

The *projection* of a given point $a \in \mathbf{R}^n$ on the line is a vector v located on the line, that is closest to a (in Euclidean norm). This corresponds to a simple optimization problem:

$$\min_t \|a-tq\|_2.$$

The vector $a_{\text{proj}} := t^*q$, where t^* is the optimal value, is referred to as the /projection/ of *a* on the line L(q). The solution of this simple problem has a closed-form expression:

$$a_{\mathrm{proj}} = (q^T a)q.$$

Ea18

Interpretation

Note that the vector x can now be written as a sum of its projection and another vector that is orthogonal to the projection:

$$a = (a - a_{\text{proj}}) + a_{\text{proj}} = (a - (q^T a)q) + (q^T a)q,$$

where $a - a_{\text{proj}} = a - (q^T a)q$ and $a_{\text{proj}} = (q^T a)q$ are orthogonal. The vector $a - a_{\text{proj}}$ can be interpreted as the result of *removing the component* of *a* along *q*.

Gram-Schmidt procedure

The Gram-Schmidt procedure is a particular orthogonalization algorithm. The basic idea is to first orthogonalize each vector w.r.t. previous ones; then normalize result to have norm one.

Let us assume that the vectors a_1, \ldots, a_n are linearly independent. The GS algorithm is as follows.

Gram-Schmidt procedure:

• set
$$\tilde{q}_1 = a_1$$
.

- 2 normalize: set $q_1 = \tilde{q}_1 / \|\tilde{q}_1\|_2$.
- **③** remove component of q_1 in a_2 : set $\tilde{q}_2 = a_2 (a_2^T q_1)q_1$.
- normalize: set $q_2 = \tilde{q}_2 / \|\tilde{q}_2\|_2$.
- **(a)** remove components of q_1, q_2 in a_3 : set $\tilde{q}_3 = a_3 (a_3^T q_1)q_1 (a_3^T q_2)q_2$.

• normalize: set
$$q_3 = \tilde{q}_3 / \| \tilde{q}_3 \|_2$$
.

etc.

The GS process is well-defined, since at each step $\tilde{q}_i \neq 0$ (otherwise this would contradict the linear independence of the a_i 's).

GS in 2D

The image shows the GS procedure applied to the case of two vectors in two dimensions. We first set the first vector to be a normalized version of the first vector a_1 . Then we remove the component of a_2 along the direction q_1 . The difference is the (un-normalized) direction \tilde{q}_2 , which becomes q_2 after normalization. At the end of the process, the vectors q_1, q_2 have both unit length and are orthogonal to each other.

Geometry

Figure: Geometry of QR: the third step in \mathbb{R}^3 .

Case with dependent vectors

It is possible to modify the algorithm to allow it to handle the case when the a_i 's are not linearly independent. If at step *i*, we find $\tilde{q}_i = 0$, then we directly jump at the next step.

Modified Gram-Schmidt procedure: set r = 0. for i = 1, ..., n:

• set
$$\tilde{q} = a_i - \sum_{j=1}^r (q_j^T a_i) q_j$$
.

2 if
$$\tilde{q} \neq 0$$
, $r = r + 1$; $q_r = \tilde{q} / \|\tilde{q}\|_2$.

On exit, the integer r is the dimension of the span of the vectors a_1, \ldots, a_k .

イロト イヨト イヨト イヨト 二日

11/18

Fa18

QR decomposition

Basic idea

The basic goal of the QR decomposition is to factor a matrix as a product of two matrices (traditionally called Q, R, hence the name of this factorization). Each matrix has a simple structure which can be further exploited in dealing with, say, linear equations.

The QR decomposition is nothing else than the Gram-Schmidt procedure applied to the columns of the matrix, and with the result expressed in matrix form.

イロト イヨト イヨト イヨト

12/18

Ea18

Full column rank case

Consider a $m \times n$ matrix $A = (a_1, \ldots, a_n)$, with each $a_i \in \mathbf{R}^m$ a column of A.

Assume first that the a_i 's (the columns of A) are linearly independent. That is, A is full column-rank (its nullspace is $\{0\}$). Each step of the G-S procedure can be written as

$$a_i = (a_i^T q_1)q_1 + \ldots + (a_i^T q_{i-1})q_{i-1} + \|\tilde{q}_i\|_2 q_i, \ \ i = 1, \ldots, n.$$

We write this as

 $a_i = r_{i1}q_1 + \ldots + r_{i,i-1}q_{i-1} + r_{ii}q_i, i = 1, \ldots, n,$

where $r_{ij} = (a_i^T q_j) \ (1 \le j \le i - 1)$ and $r_{ii} = \|\tilde{q}_{ii}\|_2$.

・ロト・白 ト・モート・モー うへの

Ea18

Full column rank case (cont'd)

Since the q_i 's are unit-length and normalized, the matrix $Q = (q_1, \ldots, q_n)$ satisfies $Q^T Q = I_n$. The QR decomposition of a $m \times n$ matrix A thus allows to write the matrix in /factored/ form:

$$A = QR, \quad Q = \begin{pmatrix} q_1 & \dots & q_n \end{pmatrix}, \quad R = \begin{pmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ 0 & r_{22} & & r_{2n} \\ \vdots & & \ddots & \vdots \\ 0 & & 0 & r_{nn} \end{pmatrix}$$

where Q is a $m \times n$ matrix with $Q^T Q = I_n$, and R is $n \times n$, upper-triangular.

・ロ・・日・・日・・日・ つくぐ

Fa18 14 / 18

Example

$$A = \begin{pmatrix} 1 & 2 & 7 \\ 3 & 4 & 8 \\ 5 & 6 & 1 \end{pmatrix} = QR, \quad Q = \begin{pmatrix} -0.1690 & 0.8971 & 0.4082 \\ -0.5071 & 0.2760 & -0.8165 \\ -0.8452 & -0.3450 & 0.4082 \end{pmatrix},$$
$$R = \begin{pmatrix} -5.9161 & -7.4374 & -6.0851 \\ 0 & 0.8281 & 8.1428 \\ 0 & 0 & -3.2660 \end{pmatrix}.$$

Fa18

Case when the columns are not independent

When the columns of A are not independent, at some step of the G-S procedure we encounter a zero vector \tilde{q}_j , which means a_j is a linear combination of a_{j-1}, \ldots, a_1 . The "modified" Gram-Schmidt procedure then simply skips to the next vector and continues.

In matrix form, we obtain A = QR, with $Q \in \mathbf{R}^{m \times r}$, $r = \mathbf{Rank}(A)$, and R has an upper staircase form, for example:

(This is simply an upper triangular matrix with some rows deleted. It is still upper triangular.)

Reordering

We can permute the columns of R to bring forward the first non-zero elements in each row:

$$R = (\begin{array}{cccc} R_1 & R_2 \end{array}) P^{T}, (\begin{array}{ccccc} R_1 & R_2 \end{array}) := \begin{pmatrix} * & * & * & * & * & * \\ 0 & * & 0 & * & * & * \\ 0 & 0 & * & 0 & 0 & * \end{pmatrix},$$

where *P* is a permutation matrix (that is, its columns are the unit vectors in some order), whose effect is to permute columns. (Since *P* is orthogonal, $P^{-1} = P^{T}$.) Now, R_1 is square, upper triangular, and invertible, since none of its diagonal elements is zero.

Reordering: matrix format

The QR decomposition can be written

$$AP = Q \left(egin{array}{cc} R_1 & R_2 \end{array}
ight),$$

where

1

- r is the rank of A;
- R_1 is $r \times r$ upper triangular, invertible matrix;
- R_2 is a $r \times (n-r)$ matrix;
- *P* is a $m \times m$ permutation matrix.