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LECTURE 4

Matrices (II)

I have in previous papers defined a
“Matrix” as a rectangular array of
terms, out of which different
systems of determinants may be
engendered as from the womb of a
common parent.

J.J. Sylvester (1814 — 1897)
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Orthonormal basis

A basis (ui )
n
i=1 is said to be /orthogonal/ if uTi uj = 0 if i 6= j . If in addition,

‖ui‖2 = 1, we say that the basis is orthonormal.

Example: An orthonormal basis in R3. The collection of vectors {u1, u2}, with

u1 =
1√
2

(
1
1

)
, u2 =

1√
2

(
1
−1

)
,

forms an orthonormal basis of R2.
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What is orthogonalization?

Orthogonalization refers to a procedure that finds an orthonormal basis of the
span of given vectors.

Given vectors a1, . . . , ak ∈ Rn, an orthogonalization procedure computes vectors
q1, . . . , qn ∈ Rn such that

S := span {a1, . . . , ak} = span {q1, . . . , qr} ,

where r is the dimension of S , and

qTi qj = 1 (i 6= j), qTi qi = 1, 1 ≤ i , j ≤ r .

That is, the vectors (q1, . . . , qr ) form an orthonormal basis for the span of the
vectors a1, . . . , ak .

Fa18 5 / 18



Projection on a line

A basic step in the procedure consists in projecting a vector on a line passing
through zero. Consider the line

L(q) := {tq : t ∈ R} ,

where q ∈ Rn is given, and normalized (‖q‖2 = 1).
The projection of a given point a ∈ Rn on the line is a vector v located on the
line, that is closest to a (in Euclidean norm). This corresponds to a simple
optimization problem:

min
t
‖a− tq‖2.

The vector aproj := t∗q, where t∗ is the optimal value, is referred to as the
/projection/ of a on the line L(q). The solution of this simple problem has a
closed-form expression:

aproj = (qTa)q.
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Interpretation

Note that the vector x can now be written as a sum of its projection and another
vector that is orthogonal to the projection:

a = (a− aproj) + aproj = (a− (qTa)q) + (qTa)q,

where a− aproj = a− (qTa)q and aproj = (qTa)q are orthogonal. The vector
a− aproj can be interpreted as the result of removing the component of a along q.
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Gram-Schmidt procedure

The Gram-Schmidt procedure is a particular orthogonalization algorithm. The
basic idea is to first orthogonalize each vector w.r.t. previous ones; then normalize
result to have norm one.

Let us assume that the vectors a1, . . . , an are linearly independent. The GS
algorithm is as follows.
Gram-Schmidt procedure:

1 set q̃1 = a1.

2 normalize: set q1 = q̃1/‖q̃1‖2.

3 remove component of q1 in a2: set q̃2 = a2 − (aT2 q1)q1.

4 normalize: set q2 = q̃2/‖q̃2‖2.

5 remove components of q1, q2 in a3: set q̃3 = a3 − (aT3 q1)q1 − (aT3 q2)q2.

6 normalize: set q3 = q̃3/‖q̃3‖2.

7 etc.

The GS process is well-defined, since at each step q̃i 6= 0 (otherwise this would
contradict the linear independence of the ai ’s).
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GS in 2D

The image shows the GS procedure applied to the case of two vectors in two
dimensions. We first set the first vector to be a normalized version of the first
vector a1. Then we remove the component of a2 along the direction q1. The
difference is the (un-normalized) direction q̃2, which becomes q2 after
normalization. At the end of the process, the vectors q1, q2 have both unit length
and are orthogonal to each other.
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Geometry

Figure: Geometry of QR: the third step in R3.
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Case with dependent vectors

It is possible to modify the algorithm to allow it to handle the case when the ai ’s
are not linearly independent. If at step i , we find q̃i = 0, then we directly jump at
the next step.
Modified Gram-Schmidt procedure: set r = 0. for i = 1, . . . , n:

1 set q̃ = ai −
∑r

j=1(qTj ai )qj .

2 if q̃ 6= 0, r = r + 1; qr = q̃/‖q̃‖2.

On exit, the integer r is the dimension of the span of the vectors a1, . . . , ak .
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QR decomposition
Basic idea

The basic goal of the QR decomposition is to factor a matrix as a product of two
matrices (traditionally called Q,R, hence the name of this factorization). Each
matrix has a simple structure which can be further exploited in dealing with, say,
linear equations.

The QR decomposition is nothing else than the Gram-Schmidt procedure applied
to the columns of the matrix, and with the result expressed in matrix form.
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Full column rank case

Consider a m × n matrix A = (a1, . . . , an), with each ai ∈ Rm a column of A.

Assume first that the ai ’s (the columns of A) are linearly independent. That is, A
is full column-rank (its nullspace is {0}). Each step of the G-S procedure can be
written as

ai = (aTi q1)q1 + . . . + (aTi qi−1)qi−1 + ‖q̃i‖2qi , i = 1, . . . , n.

We write this as

ai = ri1q1 + . . . + ri,i−1qi−1 + riiqi , i = 1, . . . , n,

where rij = (aTi qj) (1 ≤ j ≤ i − 1) and rii = ‖q̃ii‖2.
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Full column rank case (cont’d)

Since the qi ’s are unit-length and normalized, the matrix Q = (q1, . . . , qn)
satisfies QTQ = In. The QR decomposition of a m × n matrix A thus allows to
write the matrix in /factored/ form:

A = QR, Q =
(
q1 . . . qn

)
, R =


r11 r12 . . . r1n
0 r22 r2n
...

. . .
...

0 0 rnn


where Q is a m × n matrix with QTQ = In, and R is n × n,upper-triangular.
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Example

A =

 1 2 7
3 4 8
5 6 1

 = QR, Q =

 −0.1690 0.8971 0.4082
−0.5071 0.2760 −0.8165
−0.8452 −0.3450 0.4082

 ,

R =

 −5.9161 −7.4374 −6.0851
0 0.8281 8.1428
0 0 −3.2660

 .
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Case when the columns are not independent

When the columns of A are not independent, at some step of the G-S procedure
we encounter a zero vector q̃j , which means aj is a linear combination of
aj−1, . . . , a1. The “modified” Gram-Schmidt procedure then simply skips to the
next vector and continues.

In matrix form, we obtain A = QR, with Q ∈ Rm×r , r = Rank(A), and R has an
upper staircase form, for example:

R =

 ∗ ∗ ∗ ∗ ∗ ∗0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗

 .

(This is simply an upper triangular matrix with some rows deleted. It is still upper
triangular.)
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Reordering

We can permute the columns of R to bring forward the first non-zero elements in
each row:

R =
(
R1 R2

)
PT ,

(
R1 R2

)
:=

 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ 0 ∗ ∗ ∗
0 0 ∗ 0 0 ∗

 ,

where P is a permutation matrix (that is, its columns are the unit vectors in some
order), whose effect is to permute columns. (Since P is orthogonal, P−1 = PT .)
Now, R1 is square, upper triangular, and invertible, since none of its diagonal
elements is zero.
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Reordering: matrix format

The QR decomposition can be written

AP = Q
(
R1 R2

)
,

where

1

2 Q ∈ Rm×r , QTQ = Ir ;

3 r is the rank of A;

4 R1 is r × r upper triangular, invertible matrix;

5 R2 is a r × (n − r) matrix;

6 P is a m ×m permutation matrix.
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