Optimization Models

EECS 127 / EECS 227AT

Laurent El Ghaoui

EECS department
UC Berkeley

Fall 2018

LECTURE 4

Matrices (II)

I have in previous papers defined a "Matrix" as a rectangular array of terms, out of which different systems of determinants may be engendered as from the womb of a common parent.
J.J. Sylvester (1814 — 1897)

Outline

(1) Orthogonalization: Gram-Schmidt Procedure

- Orthogonalization
- Projection on a line
- Gram-Schmidt procedure
(2) QR Decomposition
- Basic idea
- Full column rank case
- General case

Orthonormal basis

A basis $\left(u_{i}\right)_{i=1}^{n}$ is said to be /orthogonal/ if $u_{i}^{T} u_{j}=0$ if $i \neq j$. If in addition, $\left\|u_{i}\right\|_{2}=1$, we say that the basis is orthonormal.

Example: An orthonormal basis in \mathbf{R}^{3}. The collection of vectors $\left\{u_{1}, u_{2}\right\}$, with

$$
u_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}, \quad u_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1},
$$

forms an orthonormal basis of \mathbf{R}^{2}.

What is orthogonalization?

Orthogonalization refers to a procedure that finds an orthonormal basis of the span of given vectors.

Given vectors $a_{1}, \ldots, a_{k} \in \mathbf{R}^{n}$, an orthogonalization procedure computes vectors $q_{1}, \ldots, q_{n} \in \mathbf{R}^{n}$ such that

$$
S:=\operatorname{span}\left\{a_{1}, \ldots, a_{k}\right\}=\operatorname{span}\left\{q_{1}, \ldots, q_{r}\right\},
$$

where r is the dimension of S, and

$$
q_{i}^{T} q_{j}=1(i \neq j), \quad q_{i}^{T} q_{i}=1, \quad 1 \leq i, j \leq r .
$$

That is, the vectors $\left(q_{1}, \ldots, q_{r}\right)$ form an orthonormal basis for the span of the vectors a_{1}, \ldots, a_{k}.

Projection on a line

A basic step in the procedure consists in projecting a vector on a line passing through zero. Consider the line

$$
L(q):=\{t q: t \in \mathbf{R}\},
$$

where $q \in \mathbf{R}^{n}$ is given, and normalized $\left(\|q\|_{2}=1\right)$.
The projection of a given point $a \in \mathbf{R}^{n}$ on the line is a vector v located on the line, that is closest to a (in Euclidean norm). This corresponds to a simple optimization problem:

$$
\min _{t}\|a-t q\|_{2}
$$

The vector $a_{\text {proj }}:=t^{*} q$, where t^{*} is the optimal value, is referred to as the /projection/ of a on the line $L(q)$. The solution of this simple problem has a closed-form expression:

$$
a_{\text {proj }}=\left(q^{T} a\right) q
$$

Interpretation

Note that the vector x can now be written as a sum of its projection and another vector that is orthogonal to the projection:

$$
a=\left(a-a_{\text {proj }}\right)+a_{\text {proj }}=\left(a-\left(q^{T} a\right) q\right)+\left(q^{T} a\right) q
$$

where $a-a_{\text {proj }}=a-\left(q^{T} a\right) q$ and $a_{\text {proj }}=\left(q^{T} a\right) q$ are orthogonal. The vector $a-a_{\text {proj }}$ can be interpreted as the result of removing the component of a along q.

Gram-Schmidt procedure

The Gram-Schmidt procedure is a particular orthogonalization algorithm. The basic idea is to first orthogonalize each vector w.r.t. previous ones; then normalize result to have norm one.

Let us assume that the vectors a_{1}, \ldots, a_{n} are linearly independent. The GS algorithm is as follows.

Gram-Schmidt procedure:

(1) set $\tilde{q}_{1}=a_{1}$.
(2) normalize: set $q_{1}=\tilde{q}_{1} /\left\|\tilde{q}_{1}\right\|_{2}$.
(3) remove component of q_{1} in a_{2} : set $\tilde{q}_{2}=a_{2}-\left(a_{2}^{T} q_{1}\right) q_{1}$.
(9) normalize: set $q_{2}=\tilde{q}_{2} /\left\|\tilde{q}_{2}\right\|_{2}$.
(5) remove components of q_{1}, q_{2} in a_{3} : set $\tilde{q}_{3}=a_{3}-\left(a_{3}^{T} q_{1}\right) q_{1}-\left(a_{3}^{T} q_{2}\right) q_{2}$.
(0) normalize: set $q_{3}=\tilde{q}_{3} /\left\|\tilde{q}_{3}\right\|_{2}$.
((etc.
The GS process is well-defined, since at each step $\tilde{q}_{i} \neq 0$ (otherwise this would contradict the linear independence of the a_{i} 's).

GS in 2 D

The image shows the GS procedure applied to the case of two vectors in two dimensions. We first set the first vector to be a normalized version of the first vector a_{1}. Then we remove the component of a_{2} along the direction q_{1}. The difference is the (un-normalized) direction \tilde{q}_{2}, which becomes q_{2} after normalization. At the end of the process, the vectors q_{1}, q_{2} have both unit length and are orthogonal to each other.

Geometry

Figure: Geometry of $Q R$: the third step in \mathbb{R}^{3}.

Case with dependent vectors

It is possible to modify the algorithm to allow it to handle the case when the a_{i} 's are not linearly independent. If at step i, we find $\tilde{q}_{i}=0$, then we directly jump at the next step.
Modified Gram-Schmidt procedure: set $r=0$. for $i=1, \ldots, n$:
(1) set $\tilde{q}=a_{i}-\sum_{j=1}^{r}\left(q_{j}^{T} a_{i}\right) q_{j}$.
(2) if $\tilde{q} \neq 0, r=r+1 ; q_{r}=\tilde{q} /\|\tilde{q}\|_{2}$.

On exit, the integer r is the dimension of the span of the vectors a_{1}, \ldots, a_{k}.

QR decomposition

Basic idea

The basic goal of the QR decomposition is to factor a matrix as a product of two matrices (traditionally called Q, R, hence the name of this factorization). Each matrix has a simple structure which can be further exploited in dealing with, say, linear equations.

The QR decomposition is nothing else than the Gram-Schmidt procedure applied to the columns of the matrix, and with the result expressed in matrix form.

Full column rank case

Consider a $m \times n$ matrix $A=\left(a_{1}, \ldots, a_{n}\right)$, with each $a_{i} \in \mathbf{R}^{m}$ a column of A.
Assume first that the a_{i} 's (the columns of A) are linearly independent. That is, A is full column-rank (its nullspace is $\{0\}$). Each step of the G-S procedure can be written as

$$
a_{i}=\left(a_{i}^{T} q_{1}\right) q_{1}+\ldots+\left(a_{i}^{T} q_{i-1}\right) q_{i-1}+\left\|\tilde{q}_{i}\right\|_{2} q_{i}, \quad i=1, \ldots, n .
$$

We write this as

$$
a_{i}=r_{i 1} q_{1}+\ldots+r_{i, i-1} q_{i-1}+r_{i i} q_{i}, \quad i=1, \ldots, n,
$$

where $r_{i j}=\left(a_{i}^{T} q_{j}\right)(1 \leq j \leq i-1)$ and $r_{i i}=\left\|\tilde{q}_{i i}\right\|_{2}$.

Full column rank case (cont'd)

Since the q_{i} 's are unit-length and normalized, the matrix $Q=\left(q_{1}, \ldots, q_{n}\right)$ satisfies $Q^{T} Q=I_{n}$. The QR decomposition of a $m \times n$ matrix A thus allows to write the matrix in /factored/ form:

$$
A=Q R, \quad Q=\left(\begin{array}{lll}
q_{1} & \ldots & q_{n}
\end{array}\right), \quad R=\left(\begin{array}{cccc}
r_{11} & r_{12} & \ldots & r_{1 n} \\
0 & r_{22} & & r_{2 n} \\
\vdots & & \ddots & \vdots \\
0 & & 0 & r_{n n}
\end{array}\right)
$$

where Q is a $m \times n$ matrix with $Q^{T} Q=I_{n}$, and R is $n \times n$, upper-triangular.

Example

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & 2 & 7 \\
3 & 4 & 8 \\
5 & 6 & 1
\end{array}\right)=Q R, Q=\left(\begin{array}{ccc}
-0.1690 & 0.8971 & 0.4082 \\
-0.5071 & 0.2760 & -0.8165 \\
-0.8452 & -0.3450 & 0.4082
\end{array}\right), \\
\\
R=\left(\begin{array}{ccc}
-5.9161 & -7.4374 & -6.0851 \\
0 & 0.8281 & 8.1428 \\
0 & 0 & -3.2660
\end{array}\right) .
\end{gathered}
$$

Case when the columns are not independent

When the columns of A are not independent, at some step of the G-S procedure we encounter a zero vector \tilde{q}_{j}, which means a_{j} is a linear combination of a_{j-1}, \ldots, a_{1}. The "modified" Gram-Schmidt procedure then simply skips to the next vector and continues.

In matrix form, we obtain $A=Q R$, with $Q \in \mathbf{R}^{m \times r}, r=\boldsymbol{\operatorname { R a n k }}(A)$, and R has an upper staircase form, for example:

$$
R=\left(\begin{array}{cccccc}
* & * & * & * & * & * \\
0 & 0 & * & * & * & * \\
0 & 0 & 0 & 0 & * & *
\end{array}\right) .
$$

(This is simply an upper triangular matrix with some rows deleted. It is still upper triangular.)

Reordering

We can permute the columns of R to bring forward the first non-zero elements in each row:

$$
R=\left(\begin{array}{ll}
R_{1} & R_{2}
\end{array}\right) P^{T}, \quad\left(R_{1} \mid R_{2}\right):=\left(\begin{array}{ccc|ccc}
* & * & * & * & * & * \\
0 & * & 0 & * & * & * \\
0 & 0 & * & 0 & 0 & *
\end{array}\right),
$$

where P is a permutation matrix (that is, its columns are the unit vectors in some order), whose effect is to permute columns. (Since P is orthogonal, $P^{-1}=P^{T}$.) Now, R_{1} is square, upper triangular, and invertible, since none of its diagonal elements is zero.

Reordering: matrix format

The QR decomposition can be written

$$
A P=Q\left(\begin{array}{ll}
R_{1} & R_{2}
\end{array}\right),
$$

where
©
(2) $Q \in \mathbf{R}^{m \times r}, Q^{T} Q=I_{r}$;
(3) r is the rank of A;
(1) R_{1} is $r \times r$ upper triangular, invertible matrix;
(0) R_{2} is a $r \times(n-r)$ matrix;
(1) P is a $m \times m$ permutation matrix.

