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LECTURE 5

Symmetric Matrices

Whoever think algebra is a trick in
obtaining unknowns has thought in
vain. No attention should be paid
to the fact that algebra and
geometry are different in
appearance. Algebras are geometric
facts which are proved.

Omar Khayyam, 1050–1123.
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Basics

A square matrix A ∈ Rn,n is symmetric if it is equal to its transpose: A = A>, that
is: Aij = Aji , 1 ≤ i , j ≤ n.

Elements above the diagonal in a symmetric matrix are thus identical to
corresponding elements below the diagonal.

Symmetric matrices are ubiquitous in engineering applications. They arise, for
instance, in the description of graphs with undirected weighted edges between the
nodes, in geometric distance arrays (between, say, cities), in defining the Hessian of
a nonlinear function, in describing the covariances of random vectors, etc.

The following is an example of a 3× 3 symmetric matrix:

A =

 4 3/2 2
3/2 2 5/2

2 5/2 2

 .
The set of symmetric n × n matrices is is a subspace of Rn,n, and it is denoted with
Sn.
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Example

Example 1 (Sample covariance matrix)

Given m points x (1), . . . , x (m) in Rn, we define the sample covariance matrix to be
the n × n symmetric matrix

C
.

=
1

m

m∑
i=1

(x (i) − x̂)(x (i) − x̂)>,

where x̂ ∈ Rn is the sample average of the points: x̂
.

= 1
m

∑m
i=1 x

(i).

The covariance matrix C is obviously a symmetric matrix. This matrix arises when
computing the sample variance of the scalar products si

.
= w>x (i), i = 1, . . . ,m,

where w ∈ Rn is a given vector:

σ2 =
m∑
i=1

(w>x (i) − ŝ)2 =
m∑
i=1

(w>(x (i) − x̂))2 = w>Cw .
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Example

Example 2 (Portfolio variance)

For n financial assets, we can define a vector r ∈ Rn whose components rk are the
rate of returns of the k-th asset, k = 1, . . . , n.

Assume now that we have observed m samples of historical returns r (i),
i = 1, . . . ,m. The sample average over that history of return is
r̂ = (1/m)(r (1) + . . .+ r (m)), and the sample covariance matrix has (i , j) component
given by

Cij =
1

m

m∑
t=1

(r
(t)
i − r̂i )(r

(t)
j − r̂j), 1 ≤ i , j ≤ n.

If w ∈ Rn represents a portfolio “mix,” that is wk ≥ 0 is the fraction of the total
wealth invested in asset k, then the return of such a portfolio is given by ρ = r>w .

The sample average of the portfolio return is r̂>w , while the sample variance is
given by w>Cw .
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Basics

Example 3 (Hessian matrix)

The Hessian of a twice differentiable function f : Rn → R at a point x ∈ dom f is
the matrix containing the second derivatives of the function at that point. That is,
the Hessian is the matrix with elements given by

Hij =
∂2f (x)

∂xi∂xj
, 1 ≤ i , j ≤ n.

The Hessian of f at x is often denoted as ∇2f (x).

Since the second-derivative is independent of the order in which derivatives are
taken, it follows that Hij = Hji for every pair (i , j), thus the Hessian is always a
symmetric matrix.
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Basics

Quadratic functions

Consider the quadratic function (a polynomial function is said to be quadratic if the
maximum degree of its monomials is equal to two)

q(x) = x2
1 + 2x1x2 + 3x2

2 + 4x1 + 5x2 + 6.

The Hessian of q at x is given by

H =

[
∂2q(x)

∂xi∂xj

]
1≤i,j≤2

=

 ∂q

∂x2
1

∂2q
∂x1∂x2

∂2q
∂x2∂x1

∂q

∂x2
2

 =

[
2 2
2 6

]
.

The monomials in q(x) of degree two can also be written compactly as

x2
1 + 2x1x2 + 3x2

2 =
1

2
x>Hx .

Any quadratic function can be written as the sum of a quadratic term involving the
Hessian, and an affine term:

q(x) =
1

2
x>Hx + c>x + d , c> = [4 5], d = 6.
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The spectral theorem

Any symmetric matrix is orthogonally similar to a diagonal matrix. This is stated in the
following so-called spectral theorem for symmetric matrices.

Theorem 1 (Spectral Theorem)

Let A ∈ Rn,n be symmetric, let λi ∈ R, i = 1, . . . , n, be the eigenvalues of A (counting
multiplicities). Then, there exist a set of orthonormal vectors ui ∈ Rn, i = 1, . . . , n, such
that Aui = λiui . Equivalently, there exist an orthogonal matrix U = [u1 · · · un] (i.e.,
UU> = U>U = In) such that

A = UΛU> =
n∑

i=1

λiuiu
>
i , Λ = diag (λ1, . . . , λn) .
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Variational characterization of eigenvalues

Since the eigenvalues of A ∈ Sn are real, we can arrange them in decreasing order:

λmax(A) = λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) = λmin(A).

The extreme eigenvalues can be related to the minimum and the maximum attained
by the quadratic form induced by A over the unit Euclidean sphere.

For x 6= 0 the ratio
x>Ax

x>x
is called a Rayleigh quotient.
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Variational characterization of eigenvalues

Theorem 2 (Rayleigh quotients)

Given A ∈ Sn, it holds that

λmin(A) ≤ x>Ax

x>x
≤ λmax(A), ∀x 6= 0.

Moreover,

λmax(A) = max
x : ‖x‖2=1

x>Ax

λmin(A) = min
x : ‖x‖2=1

x>Ax ,

and the maximum and minimum are attained for x = u1 and for x = un, respectively,
where u1 (resp. un) is the unit-norm eigenvector of A associated with its largest (resp.
smallest) eigenvalue of A.
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Matrix gain

Given a matrix A ∈ Rm,n, let us consider the linear function associated to A, which
maps input vectors x ∈ Rn to output vectors y ∈ Rm:

y = Ax .

Given a vector norm, the matrix gain, or operator norm, is defined as the maximum
value of the ratio ‖Ax‖/‖x‖ between the size (norm) of the output and the of the
input.

In particular, the gain with respect to the Euclidean norm is defined as

‖A‖2 = max
x 6=0

‖Ax‖2

‖x‖2
,

and it is often referred to as the spectral norm of A.

The square of the input-output ratio in the Euclidean norm is

‖Ax‖2
2

‖x‖2
2

=
x>(A>A)x

x>x
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Matrix gain

This quantity is upper and lower bounded by the maximum and by the minimum
eigenvalue of the symmetric matrix A>A ∈ Sn, respectively:

λmin(A>A) ≤ ‖Ax‖
2
2

‖x‖2
2

≤ λmax(A>A)

The upper and lower bounds are actually attained when x is equal to an eigenvector
of A>A corresponding respectively to the maximum and to minimum eigenvalue of
A>A. Therefore,

‖A‖2 = max
x 6=0

‖Ax‖2

‖x‖2
=
√
λmax(A>A),

where this maximum gain is obtained for x along the direction of eigenvector u1 of
A>A, and

min
x 6=0

‖Ax‖2

‖x‖2
=
√
λmin(A>A),

where this minimum gain is obtained for x along the direction of eigenvector un of
A>A.
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Positive-semidefinite matrices

A symmetric matrix A ∈ Sn is said to be positive semidefinite (PSD) if the
associated quadratic form is nonegative, i.e.,

x>Ax ≥ 0, ∀x ∈ Rn.

If, moreover,
x>Ax > 0, ∀0 6= x ∈ Rn,

then A is said to be positive definite. To denote a symmetric positive semidefinite
(resp. positive definite) matrix, we use the notation A � 0 (resp. A � 0).

We say that A is negative semidefinite, written A � 0, if −A � 0, and likewise A is
negative definite, written A ≺ 0, if −A � 0.

It is immediate to see that a positive semidefinite matrix is actually positive definite
if and only if it is invertible.

It holds that

A � 0 ⇔ λi (A) ≥ 0, i = 1, . . . , n

A � 0 ⇔ λi (A) > 0, i = 1, . . . , n.
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Congruence transformations

Corollary 1

For any matrix A ∈ Rm,n it holds that:

1 A>A � 0, and AA> � 0;

2 A>A � 0 if and only if A is full-column rank, i.e., rankA = n;

3 AA> � 0 if and only if A is full-row rank, i.e., rankA = m.
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Matrix square-root and Cholesky decomposition

Let A ∈ Sn. Then

A � 0 ⇔ ∃B � 0 : A = B2

A � 0 ⇔ ∃B � 0 : A = B2.

Matrix B = A1/2 is called the matrix square-root of A.

Any A � 0 admits the spectral factorization A = UΛU>, with U orthogonal and
Λ = diag (λ1, . . . , λn), λi ≥ 0, i = 1, . . . , n. Defining Λ1/2 = diag

(√
λ1, . . . ,

√
λ1

)
and B = UΛ1/2U>:

A � 0 ⇔ ∃B : A = B>B

A � 0 ⇔ ∃B nonsingular : A = B>B.

A is positive definite if and only if it is congruent to the identity.
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Positive-definite matrices and ellipsoids

Positive-definite matrices are intimately related to geometrical objects called
ellipsoids.

A full-dimensional, bounded ellipsoid with center in the origin can indeed be defined
as the set

E = {x ∈ Rn : x>P−1x ≤ 1}, P � 0.

The eigenvalues λi and eigenvectors ui of P define the orientation and shape of the
ellipsoid: ui the directions of the semi axes of the ellipsoid, while their lengths are
given by

√
λi .

Using the Cholesky decomposition P−1 = A>A, the previous definition of ellipsoid
E is also equivalent to: E = {x ∈ Rn : ‖Ax‖2 ≤ 1}.

0
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The PSD cone and partial order

The set of positive semidefinite matrices Sn
+ is a convex cone.

First, it is a convex set, since it satisfies the defining property of convex sets (more
on this later!), that is for any two matrices A1,A2 ∈ Sn

+ and any θ ∈ [0, 1], it holds
that

x>(θA1 + (1− θ)A2)x = θx>A1x + (1− θ)x>A2x ≥ 0, ∀x ,
hence θA1 + (1− θ)A2 ∈ Sn

+.

Moreover, for any A � 0 and any α ≥ 0, we have that αA � 0, which says that Sn
+

is a cone.

The relation “�” defines a partial order on the cone of PSD matrices. That is, we
say that A � B if A− B � 0 and, similarly, A � B if A− B � 0. This is a partial
order, since not any two symmetric matrices may be put in a � or � relation.
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Schur complements

Theorem 3 (Schur complements)

Let A ∈ Sn, B ∈ Sm, X ∈ Rn,m, with B � 0. Consider the symmetric block matrix

M =

[
A X
X> B

]
,

and define the so-called Schur complement matrix of A in M

S
.

= A− XB−1X>.

Then,
M � 0 (resp., M � 0) ⇔ S � 0 (resp., S � 0).
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Principal Component Analysis
Motivation

Figure: Daily log-returns of 77 Fortune 500 companies, 1/2/2007—12/31/2008.

High-dimensional data does not make any sense! (Other than tell us: returns are
approximately zero . . . )

Fa18 20 / 32



Which view is better?

Figure: A “flat” data set viewed from two different angles in R3.
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Principal Component Analysis
Overview

Principal Component Analysis (PCA) originated in psychometrics in the 1930’s. It
is now widely used in

Exploratory data analysis.

Simulation.

Visualization.

Application fields include

Finance, marketing, economics.

Biology, medecine.

Engineering design, signal compression and image processing.

Search engines, data mining.
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Principal component analysis (PCA)
Basic idea

Principal component analysis (PCA) is a technique of unsupervised learning, widely
used to “discover” the most important, or informative, directions in a data set, that
is the directions along which the data varies the most.

In the data cloud below it is apparent that there exist a direction (at about 45
degrees from the horizontal axis) along which almost all the variation of the data is
contained. In contrast, the direction at about 135 degrees contains very little
variation of the data.

The important direction was easy to spot in this two-dimensional example.
However, graphical intuition does not help when analyzing data in dimension n > 3,
which is where Principal Components Analysis (PCA) comes in handy.
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Recap from lecture 2: projection on a line

A line is an affine subspace of
dimension 1. It can be
parametrized as

L = {x0 + tu : t ∈ R},

where x0, u ∈ Rn are given, with
‖u‖2 = 1.

Projection of a point x ∈ R on the line:

z∗ = arg min
z∈L
‖z − z‖2 = x0 + t∗u, t∗ = u>(x − x0).
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Variance of scores of projected points

Given a line (x0, u ∈ Rn are
given, with ‖u‖2 = 1)

L = {x0 + tu : t ∈ R},

we seek to find the variance of
the scores ti = uT (xi − x0),
i = 1, . . . ,m of the projected
points.

This variance of the scores is

(1/m)
∑
i=1

(u>xi − u>x̂)2 = u>Cu,

where x̂ = (1/m)(x1 + . . .+ xm), and C is the covariance matrix of the data.
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Variance maximization problem

Let C be the (empirical) covariance matrix. Variance maximization problem:

max
x

u>Cu : ‖u‖2 = 1.

Assume the EVD of C is given:

C =

p∑
i=1

λiuiu
>
i ,

with λ1 ≥ . . . λp, and U = [u1, . . . , up] is orthogonal (U>U = I ). Then a solution
to

max
u : ‖u‖2=1

u>Cu

is u∗ = u1, with u1 an eigenvector of C that corresponds to its largest eigenvalue
λ1.

Alternatively, u1 can be found directly via SVD of (centered) data matrix (see
later).
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Finding orthogonal directions
A deflation method

Once we’ve found a direction with high variance, can we repeat the process and
find other ones?

Deflation method:

Project data points on the subspace orthogonal to the direction we found.

Find a direction of maximal variance for projected data.

The process stops after p steps (p is the dimension of the whole space), but can
be stopped earlier (to find only k directions, with k << p).
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Finding orthogonal directions
Result

It turns out that the direction that solves

max
u

u>Cu : u>u1 = 0, ‖u‖2 = 1,

is u2, an eigenvector corresponding to the second-to-largest eigenvalue.

After k steps of the deflation process, the directions returned are u1, . . . , uk . Thus
we can compute k directions of largest variance in one eigenvalue decomposition
of the covariance matrix.
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Geometry of deflation

In PCA, we first identify a line L
such that the points projected
on L have high variance.

Deflation consists in projecting
the data on a hyperplane
orthogonal to the line L; a new
minimum-distance line contained
in the hyperplane is then found.

Since the dimension of the
problem is reduced by one at
each step, this process stops in
at most n steps.
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Measuring quality

How well is data approximated by its projections on the successive subspaces?

Approach: compare sum of variances contained in the k directions found, with
total variance.

Explained variance: measured by the ratio

λ1 + . . .+ λk
λ1 + . . .+ λp

,

where λ1 ≥ . . . ≥ λp are the eigenvalues of the covariance matrix.
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Examples
PCA of market data, prior to 2008 crisis

Figure: Data: Daily log-returns of 77 Fortune 500 companies,
1/2/2007—12/31/2008.

Plot shows the eigenvalues of
covariance matrix in decreasing
order.

First ten components explain 80%
of the variance.

Largest magnitude of eigenvector
for 1st component correspond to
financial sector (FABC, FTU, MER,
AIG, MS).
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Examples
PCA of voting data

Figure: Projection of US Senate voting data on random direction (left panel) and
direction of maximal variance (right panel). The latter reveals party structure (party
affiliations added after the fact). Note also the much higher range of values it provides.
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