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LECTURE 6

Singular Value Decomposition
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(1932–2007).
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Motivation

Figure: Votes of US Senators, 2002-2004. The plot is impossible to read. . .

Can we make sense of this data?

For example, do the two political parties emerge from the data alone?

Could we further provide a “political spectrum score” for each Senator?
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Dyads

A matrix A ∈ Rm,n is called a dyad if it can be written as

A = pq>

for some vectors p ∈ Rm, q ∈ Rn. Element-wise the above reads

Aij = piqi , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Interpretation:

The columns of A are scaled copies the same column p, with scaling factors given
in vector q.

The rows of A are scaled copies the same row q>, with scaling factors given in
vector p.
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Dyads

Example: video frames

We are given a set of image frames representing a video. Assuming that each image is
represented by a row vector of pixels, we can represent the whole video sequence as a
matrix A. Each row is an image.

. . .

Figure: Row vector representation of an image.

If the video shows a scene where no movement occurs, then the matrix A is a dyad.
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Sums of dyads

The singular value decomposition theorem, seen next, states that any matrix can be
written as a sum of dyads:

A =
r∑

i=1

piq
>
i

for vectors pi , qi that are mutually orthogonal.

This allows to intepret data matrices as sums of “simpler” matrices (dyads).
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The singular value decomposition (SVD)

SVD theorem

The singular value decomposition (SVD) of a matrix provides a three-term factorization
which is similar to the spectral factorization, but holds for any, possibly non-symmetric
and rectangular, matrix A ∈ Rm,n.

Theorem 1 (SVD decomposition)

Any matrix A ∈ Rm,n can be factored as

A = UΣ̃V>

where V ∈ Rn,n and U ∈ Rm,m are orthogonal matrices (i.e., U>U = Im, V>V = In),
and Σ̃ ∈ Rm,n is a matrix having the first r

.
= rankA diagonal entries (σ1, . . . , σr )

positive and decreasing in magnitude, and all other entries zero:

Σ̃ =

[
Σ 0r,n−r

0m−r,r 0m−r,n−r

]
, Σ = diag (σ1, . . . , σr ) � 0.
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Compact-form SVD

Corollary 1 (Compact-form SVD)

Any matrix A ∈ Rm,n can be expressed as

A =
r∑

i=1

σiuiv
>
i = UrΣV>r

where r = rankA, Ur = [u1 · · · ur ] is such that U>r Ur = Ir , Vr = [v1 · · · vr ] is such
that V>r Vr = Ir , and σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

The positive numbers σi are called the singular values of A, vectors ui are called the
left singular vectors of A, and vi the right singular vectors. These quantities satisfy

Avi = σiui , u>i A = σivi , i = 1, . . . , r .

Moreover, σ2
i = λi (AA

>) = λi (A
>A), i = 1, . . . , r , and ui , vi are the eigenvectors

of A>A and of AA>, respectively.

Fa18 9 / 32



Interpretation

The singular value decomposition theorem allows to write any matrix can be written as a
sum of dyads:

A =
r∑

i=1

σiuiv
>
i

where

Vectors ui , vi are normalized, with σi > 0 providing the “strength” of the
corresponding dyad;

The vectors ui , i = 1, . . . , r (resp. vi , i = 1, . . . , r) are mutually orthogonal.
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Matrix properties via SVD

Rank, nullspace and range

The rank r of A is the cardinality of the nonzero singular values, that is the number
of nonzero entries on the diagonal of Σ̃.

Since r = rankA, by the fundamental theorem of linear algebra the dimension of
the nullspace of A is dimN (A) = n − r . An orthonormal basis spanning N (A) is
given by the last n − r columns of V , i.e.

N (A) = R(Vnr ), Vnr
.

= [vr+1 · · · vn].

Similarly, an orthonormal basis spanning the range of A is given by the first r
columns of U, i.e.

R(A) = R(Ur ), Ur
.

= [u1 · · · ur ].
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Matrix properties via SVD

Matrix norms

The squared Frobenius matrix norm of a matrix A ∈ Rm,n can be defined as

‖A‖2F = traceA>A =
n∑

i=1

λi (A
>A) =

n∑
i=1

σ2
i ,

where σi are the singular values of A. Hence the squared Frobenius norm is nothing
but the sum of the squares of the singular values.

The squared spectral matrix norm ‖A‖22 is equal to the maximum eigenvalue of
A>A, therefore

‖A‖22 = σ2
1 ,

i.e., the spectral norm of A coincides with the maximum singular value of A.

The so-called nuclear norm of a matrix A is defined in terms of its singular values:

‖A‖∗ =
r∑

i=1

σi , r = rankA.

The nuclear norm appears in several problems related to low-rank matrix
completion or rank minimization problems.
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Matrix norm: proof

We have

‖A‖22 = max
x 6=0

‖Ax‖22
‖x‖22

= max
x 6=0

‖Σ̃V>x‖22
‖x‖22

(since U>U = I )

= max
z 6=0

‖Σ̃z‖22
‖z‖22

(with z
.

= V>x)

= max
z
‖Σ̃z‖22 : zT z = 1

= max
z

r∑
i=1

σ2
i z

2
i : zT z = 1

= max
1>p=1, p≥0

r∑
i=1

σ2
i pi (with pi

.
= z2i , i = 1, . . . , r)

≤ max
1≤i≤r

σ2
i .

In the last line the upper bound is attained for some feasible vector p, hence
equality holds.
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Matrix properties via SVD

Condition number

The condition number of an invertible matrix A ∈ Rn,n is defined as the ratio
between the largest and the smallest singular value:

κ(A) =
σ1

σn
= ‖A‖2 · ‖A−1‖2.

This number provides a quantitative measure of how close A is to being singular
(the larger κ(A) is, the more close to singular A is).

The condition number also provides a measure of the sensitivity of the solution of a
system of linear equations to changes in the equation coefficients.
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Matrix properties via SVD

Matrix pseudo-inverses

Given A ∈ Rm,n, a pseudoiverse is a matrix A† that satisfies

AA†A = A
A†AA† = A†

(AA†)> = AA†

(A†A)> = A†A.

A specific pseudoinverse is the so-called Moore-Penrose pseudoinverse:

A† = V Σ̃†U> ∈ Rn,m

where

Σ̃† =

[
Σ−1 0r,m−r

0n−r,r 0n−r,m−r

]
, Σ−1 = diag

(
1

σ1
, . . . ,

1

σr

)
� 0.

Due to the zero blocks in Σ̃, A† can be written compactly as

A† = VrΣ
−1U>r .
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Matrix properties via SVD

Moore-Penrose pseudo-inverse: special cases

If A is square and nonsingular, then A† = A−1.

If A ∈ Rm,n is full column rank, that is r = n ≤ m, then

A†A = VrV
>
r = VV> = In,

that is, A† is a left inverse of A, and it has the explicit expression

A† = (A>A)−1A>.

If A ∈ Rm,n is full row rank, that is r = m ≤ n, then

AA† = UrU
>
r = UU> = Im,

that is, A† is a right inverse of A, and it has the explicit expression

A† = A>(AA>)−1.
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Matrix properties via SVD

Projectors

Matrix PR(A)
.

= AA† = UrU
>
r is an orthogonal projector onto R(A). This means

that, for any y ∈ Rn, the solution of problem

min
z∈R(A)

‖z − y‖2

is given by z∗ = PR(A)y .

Similarly, matrix PN (A>)
.

= (Im − AA†) is an orthogonal projector onto

R(A)⊥ = N (A>).

Matrix PN (A)
.

= In − A†A is an orthogonal projector onto N (A).

Matrix PN (A)⊥
.

= A†A is an orthogonal projector onto N (A)⊥ = R(A>).
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Low-rank matrix approximation

Let A ∈ Rm,n be a given matrix, with rank(A) = r > 0. We consider the problem of
approximating A with a matrix of lower rank. In particular, we consider the
following rank-constrained approximation problem

min
Ak∈Rm,n

‖A− Ak‖2F

s.t.: rank(Ak) = k,

where 1 ≤ k ≤ r is given.

Let

A = UΣ̃V> =
r∑

i=1

σiuiv
>
i

be an SVD of A. An optimal solution of the above problem is simply obtained by
truncating the previous summation to the k-th term, that is

Ak =
k∑

i=1

σiuiv
>
i .
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Low-rank matrix approximation

The ratio

ηk =
‖Ak‖2F
‖A‖2F

=
σ2
1 + · · ·+ σ2

k

σ2
1 + · · ·+ σ2

r

indicates what fraction of the total variance (Frobenius norm) in A is explained by
the rank k approximation of A.

A plot of ηk as a function of k may give useful indications on a good rank level k at
which to approximate A.

ηk is related to the relative norm approximation error

ek =
‖A− Ak‖2F
‖A‖2F

=
σ2
k+1 + · · ·+ σ2

r

σ2
1 + · · ·+ σ2

r
= 1− ηk .
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Minimum “distance” to rank deficiency

Suppose A ∈ Rm,n, m ≥ n is full rank, i.e., rank(A) = n. We ask what is a minimal
perturbation δA of A that makes A + δA rank deficient. The Frobenius norm (or
the spectral norm) of the minimal perturbation δA measures the “distance” of A
from rank deficiency.

Formally, we need to solve

min
δA∈Rm,n

‖δA‖2F

s.t.: rank(A + δA) = n − 1.

This problem is equivalent to rank approximation, for δA = Ak − A. The optimal
solution is thus readily obtained as

δA∗ = Ak − A,

where Ak =
∑n−1

i=1 σiuiv
>
i . Therefore, we have

δA∗ = −σnunv
>
n .

The minimal perturbation that leads to rank deficiency is a rank-one matrix. The
distance to rank deficiency is ‖δA∗‖F = ‖δA∗‖2 = σn.
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Example: Image compression

A 266× 400 matrix A of integers corresponding to the gray levels of the pixels in an
image.

Compute the SVD of matrix A, and plot the ratio ηk , for k from 1 to 266

50 100 150 200 250
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

k = 9 already captures 96% of the image variance.
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Example: Image compression

Figure: Rank k approximations of the original image, for k = 9 (top left), k = 23 (top
right), k = 49 (bottom left), and k = 154 (bottom right).
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Link with PCA

Let xi ∈ Rn, i = 1, . . . ,m be data points; x̄ = 1
m

∑m
i=1 xi is the center of the data

points; X̃ n ×m is a matrix containing the centered data points:

X̃ = [x̃1 · · · x̃m], x̃i
.

= xi − x̄ , i = 1, . . . ,m.

We look for a a normalized direction in data space, z ∈ Rn, ‖z‖2 = 1, such that the
the variance of the projections of the centered data points on the line determined
by z is maximal.

The components of the centered data along direction z are given by

αi = x̃>i z , i = 1, . . . ,m.

(αiz are the projections of x̃i along the span of z).

The mean-square variation of the data along direction z is thus given by

1

m

m∑
i=1

α2
i =

m∑
i=1

z>x̃i x̃
>
i z = z>X̃ X̃>z .
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PCA is SVD of a centered data matrix

The direction z along which the data has the largest variation can thus be found as
the solution to the following optimization problem:

max
z∈Rn

z>(X̃ X̃>)z s.t.: ‖z‖2 = 1.

Let us now solve the previous problem via the SVD of the centered data matrix X̃ :
let

X̃ = UrΣV>r =
r∑

i=1

σiuiv
>
i .

Then, H
.

= X̃ X̃> = UrΣ
2U>r .

From the variational representation, we have that the optimal solution of this
problem is given by the column u1 of Ur corresponding to the largest eigenvalue of
H, which is σ2

1 .

The direction of largest data variation is thus readily found as z = u1, and the
mean-square variation along this direction is proportional to σ2

1 .

Successive principal axes can be found by “removing” the first principal
components, and applying the same approach again on the “deflated” data matrix.
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Example: PCA of market data

Consider data consisting in the returns of six financial indices: (1) the MSCI US
index, (2) the MSCI EUR index, (3) the MSCI JAP index, (4) the MSCI PACIFIC
index, the (5) MSCI BOT liquidity index, and the (6) MSCI WORLD index.

We used monthly return data, from Feb. 26, 1993 to Feb. 28, 2007, for a total of
169 data points.
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The data matrix X has thus m = 169 data points in dimension n = 6.
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Example: PCA of market data

Centering the data, and performing the SVD on the centered data matrix X̃ , we
obtain the principal axes ui , and the corresponding singular values:

U =


−0.4143 0.2287 −0.3865 −0.658 0.0379 −0.4385
−0.4671 0.1714 −0.3621 0.7428 0.0172 −0.2632
−0.4075 −0.9057 0.0690 −0.0431 0.0020 −0.0832
−0.5199 0.2986 0.7995 −0.0173 0.0056 −0.0315
−0.0019 0.0057 0.0005 −0.0053 −0.9972 −0.0739
−0.4169 0.0937 −0.2746 −0.1146 −0.0612 0.8515



σ =
[

1.0765 0.5363 0.4459 0.2519 0.0354 0.0114
]
.

Computing the ratios ηk , we have

η × 100 = [67.77 84.58 96.21 99.92 99.99 100].

We deduce, for instance, that over 96% of the variability in the returns of these six
assets can be explained in terms of only three implicit “factors”.

In statistical terms, this means that each realization of the return vector x ∈ R6 can
be expressed (up to a 96% “approximation”) as

x = x̄ + U3z ,

where z is a zero-mean vector of random factors, and U3 = [u1 u2 u3] is the factor
loading matrix, composed of the first three principal directions of the data.
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Example: PCA of Senate voting matrix

The scores of projected points
along the line with maximal
variance shows the two political
parties. party affiliation was not
given to the algorithm, but it was
able to recover it.
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Generalized low-rank models

For X ∈ Rp×m, ordinary rank-k model solves

min
L,R
‖X − LRT‖F : L ∈ Rp×k , R ∈ Rm×k ,

by minimization over L,R alternatively. This is essentially PCA, if we work with a
column-centered data matrix.

Note that (LRT )ij = lTi rj , where

L =

 lT1
...
lTp

 , R =

 rT1
...
rTm

 ,

Thus we can write the above problem as

min
L,R

∑
i,j

L(Xij , l
T
i rj) : li ∈ Rk , i = 1, . . . , p, rj ∈ Rk , j = 1, . . . ,m,

with L(a, b) = (a− b)2.
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Generalization

Generalized low-rank model (Udell et al., 2016) solves

min
L,R

∑
i,j

L(Xij , l
T
i rj) +

∑
i

pi (li ) +
∑
j

qj(rj),

where L is a “loss function”, and functions pi , qj are penalties.

The problem does not have a closed-form solution in general.

We can solve the problem by alternative minimization over L,R.

In most cases, there is no guarantee of convergence to a global minimum.

Playing with different losses and penalties we can model a lot of useful
situations; we show three examples next.
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Regularized PCA

In regularized PCA we solve the problem

min
L,R
‖X − LRT‖2F + γ

(
‖L‖2F + ‖R‖2F

)
: L ∈ Rp×k , R ∈ Rm×k ,

with γ > 0 a regularization parameter.

Closed-form solution: Given the SVD of X = UΣV T , we set

Σ̃ii = max(0,Σii − γ), i = 1, . . . , k

and L = UkΣ̃1/2, R = VkΣ̃1/2, with Uk , Vk the first k columns in U,V .

Interpretation: we truncate and threshold the singular values.
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Non-negative matrix factorization

Non-negative matrix factorization (NNMF) is a variant on PCA where the factors
are required to be non-negative:

X = LRT , with L ≥ 0, R ≥ 0,

with inequalities understood component-wise. This problem arises when the data
matrix is itself non-negative.

We can model this with

min
L,R

∑
i,j

(Xij − lTi rj)
2 : L ≥ 0, R ≥ 0,

corresponding to penalties pi , qj all chosen to be equal to

p(z) =

{
0 if z ≥ 0
+∞ otherwise.
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PCA-based completion

Basic approach based on regularized PCA:

min
L,R,X∈X

‖X − LRT‖2F + γ
(
‖L‖2F + ‖R‖2F

)
: L ∈ Rn×k , R ∈ Rm×k ,

with X a variable, and X the set of n ×m matrices that have the required given
entries.

Alternating minimization over X , L,R works! Just add missing entries in X
as variables.

Some theoretical results show that if the locations of missing entries are
randomly distributed, convergence to the global minimum is guaranteed.

In practice, for this to work, missing entries should not follow a clear pattern
(e.g., they should not all be located at the bottom in a time-series matrix).

Fa18 32 / 32


	The singular value decomposition (SVD)
	Motivation
	Dyads
	SVD theorem

	Matrix properties via SVD
	Rank, nullspace and range
	Matrix norms, pseudo-inverses
	Projectors

	Low-rank matrix approximation
	Link with PCA
	Generalized low-rank models

