
Optimization Models
EECS 127 / EECS 227AT

Laurent El Ghaoui

EECS department
UC Berkeley

Fall 2018

Fa18 1 / 33

LECTURE 8

Least-Squares and Variants

If others would but reflect on
mathematical truths as deeply and
continuously as I have, they would
make my discoveries.

C.F. Gauss (1777 – 1855)

Fa18 2 / 33

Outline

1 Ordinary least-squares and minimum-norm solutions
Ordinary least-squares
Minimum-norm solutions to linear equations
Solving LS problems
Example

2 Variants of least-squares
Equality-constrained LS
Weighted LS
`2-regularized LS
Example: auto-regressive models

3 Kernels for least-squares
Motivations
Kernel trick
Examples of kernels

Fa18 3 / 33

Least-squares

Goal: given A ∈ Rm×n, y ∈ Rm, find x such that Ax ≈ y .

Least-squares approach: use Euclidean norm, and solve the optimization problem

min
x
‖Ax − y‖2

Since the objective function is always ≥ 0, we can solve the “ordinary least-squares”
problem

min
x
‖Ax − y‖2

2 =
m∑
i=1

r 2
i , r

.
= Ax − y .

Fa18 4 / 33

Geometric interpretation
As projection on a subspace

Since vector Ax lies in R(A), the problem amounts to determining a point ỹ = Ax∗

in R(A) at minimum distance form y .

The Projection Theorem then tells us that this point is indeed the orthogonal
projection of y onto the subspace R(A).

Fa18 5 / 33

Interpretation
As fitting a linear model

We can also interpret the problem in terms of the rows a>i , i = 1, . . . ,m, of A. The
problem reads

min
x

:
m∑
i=1

(yi − a>i x)2.

In this sense, we are trying to fit of each component yi as a linear combination of the
corresponding input ai , with x as the coefficients of this linear combination.

This interpretation is useful in the context of prediction: once the solution x∗ to the
above is found, we can “predict” the output corresponding to a new vector a ∈ Rn via
the prediction rule

ŷ = a>x∗.

Fa18 6 / 33

Least-squares

Solution

y − Ax∗ ∈ R(A)⊥ = N (A>), hence

A>(y − Ax∗) = 0

Solutions x∗ to the LS problem must satisfy the Normal Equations:

A>Ax = A>y

This system always admits a solution.

If A is full column rank (i.e., rank(A) = n), then the solution is unique, and it is
given by

x∗ = (A>A)−1A>y .

Fa18 7 / 33

Set of solutions and the pseudoinverse

Corollary 1 (Set of solutions of LS problem)

The set of optimal solutions of the LS problem

p∗ = min
x
‖Ax − y‖2

can be expressed as
Xopt = A†y +N (A),

where A†y is the minimum-norm point in the optimal set. The optimal value p∗ is the
norm of the projection of y onto orthogonal complement of R(A): for x∗ ∈ Xopt,

p∗ = ‖y − Ax∗‖2 = ‖(Im − AA†)y‖2 = ‖PR(A)⊥y‖2,

where matrix PR(A)⊥ is the projector onto R(A)⊥. If A is full column rank, then the
solution is unique, and equal to

x∗ = A†y = (A>A)−1A>y .

Fa18 8 / 33

Minimum-norm solutions to linear equations

When matrix A has more columns than rows (m < n: underdetermined), and
y ∈ R(A), we have that dimN (A) ≥ n −m > 0, hence the system y = Ax has
infinite solutions and that the set of solutions is Sx̄ = {x : x = x̄ + z , z ∈ N (A)},
where x̄ is any vector such that Ax̄ = y .

We single out from Sx̄ the one solution x∗ with minimal Euclidean norm. That is,
we solve

min
x :Ax=y

‖x‖2,

which is equivalent to minx∈Sx̄ ‖x‖2.

The solution x∗ must be orthogonal to N (A) or, equivalently, x∗ ∈ R(A>), which
means that x∗ = A>ξ, for some suitable ξ.

Since x∗ must solve the system of equations, it must be Ax∗ = y , i.e., AA>ξ = y .

If A is full row rank, AA> is invertible and the unique ξ that solves the previous
equation is ξ = (AA>)−1y . This finally gives us the unique minimum-norm solution
of the system:

x∗ = A>(AA>)−1y .

Fa18 9 / 33

Solution of OLS via QR

Assume columns of m × n A are linearly independent, hence QR factorization
A = QR exists, with

m × n matrix Q satisfies Q>Q = I ;

n × n matrix R invertible;

then A† = (A>A)−1A> = R−1Q>.

Algorithm:

compute QR factorization of m × n A: A = QR (2mn2 flops);

form z = Q>y (2mn flops);

solve triangular system Rx = z via backward substitution.

Results:

total complexity 2mn2 flops;

identical to algorithm for solving Ax = b for square invertible A;

when A is tall (m >> n), gives least squares approximate solution to Ax = b.

Fa18 10 / 33

Example
Advertising purchases1

m demographics groups we want to advertise to;

vdes is m-vector of target views or impressions;

n-vector s gives spending on n advertising channels;

m × n matrix R gives demographic reach of channels, with Rij the number of
views per dollar spent (in 1000/$);

v = Rs is m-vector of views across demographic groups;

well use least squares spending: v̂ = R†s.

1from http://web.stanford.edu/~boyd/vmls/vmls-slides.pdf.
Fa18 11 / 33

http://web.stanford.edu/~boyd/vmls/vmls-slides.pdf

Example
Advertising purchases

m = 10 groups, n = 3 channels

target views vector vdes = 1031

LS spending: ŝ = (62, 100, 1443).

Fa18 12 / 33

Variants of ordinary LS

Linear equality-constrained LS

A generalization of the basic LS problem allows for the addition of linear equality
constraints on the x variable, resulting in the constrained problem

min
x
‖Ax − y‖2

2, s.t. Cx = d ,

where C ∈ Rp,n and d ∈ Rp.

This problem can be converted into a standard LS one, by “eliminating” the
equality constraints, via a standard procedure. Suppose the problem is feasible, and
let x̄ be such that Cx̄ = d .

All feasible points are expressed as x = x̄ + Nz , where N contains by columns a
basis for N (C), and z is a new variable.

Problem becomes unconstrained in variable z :

min
z
‖Āz − ȳ‖2

2,

where Ā
.

= AN, ȳ
.

= y − Ax̄ .

Fa18 13 / 33

Variants of the least-squares problem

Weighted LS

The standard LS objective is a sum of squared equation residuals

‖Ax − y‖2
2 =

m∑
i=1

r 2
i , ri = a>i x − yi .

In some cases, the equation residuals may not be given the same importance, and
this relative importance can be modeled by introducing weights into the LS
objective, that is f0(x) =

∑m
i=1 w

2
i r

2
i , where wi ≥ 0 are the given weights. This

objective is rewritten as

f0(x) = ‖W (Ax − y)‖2
2 = ‖Awx − yw‖2

2,

where
W = diag (w1, . . . ,wm) , Aw

.
= WA, yw = Wy .

The weighted LS problem still has the structure of a standard LS problem, with
row-weighted matrix Aw and vector yw .

Fa18 14 / 33

Variants of the least-squares problem

`2-regularized LS

Regularized LS refer to a class of problems of the form

min
x
‖Ax − y‖2

2 + φ(x),

where a “regularization,” or penalty, term φ(x) is added to the usual LS objective.

In the most usual cases, φ is proportional either to the `1 or to the `2 norm of x .
The `1-regularized case gives rise to the LASSO problem, which is discussed in more
detail later. The `2-regularized case is instead discussed next:

min
x
‖Ax − y‖2

2 + λ‖x‖2
2, λ ≥ 0

Fa18 15 / 33

Variants of the least-squares problem

`2-regularized LS
min
x
‖Ax − y‖2

2 + λ‖x‖2
2, λ ≥ 0

Recalling that the squared Euclidean norm of a block-partitioned vector is equal to
the sum of the squared norms of the blocks, i.e.,∥∥∥∥[a

b

]∥∥∥∥2

2

= ‖a‖2
2 + ‖b‖2

2

we see that the regularized LS problem can be rewritten in the format of a standard
LS problem as follows

‖Ax − y‖2
2 + λ‖x‖2

2 = ‖Ãx − ỹ‖2
2,

where

Ã
.

=

[
A√
λIn

]
, ỹ

.
=

[
y
0n

]
.

λ ≥ 0 is a tradeoff parameter. Interpretation in terms of tradeoff between output
tracking accuracy and input effort.

Fa18 16 / 33

How to choose the regularization parameter?

Choosing a good value of λ is crucial. To each value corresponds a different
prediction rule (that is, a model), where a new point a is given a predicted output
ŷ = a>x∗(λ), with

x∗(λ) := arg min
x
‖Ax − y‖2

2 + λ‖x‖2
2.

For a given λ:

split original data into a training set and a test set (typical split: 80% / 20%);

build (train) model on training data set; then check the models predictions
on the test data set;

if they are similar, we can guess the model will work well on unseen data, a
desirable “generalization” property.

Fa18 17 / 33

Example
Auto-regressive models

Auto-Regressive (AR) models try to describe a time series y(k), k = 0, 1, . . .,
according to the model

y(k) = w1y(k − 1) + · · ·+ wny(k − n) + e(k),

where e(k) is an error term, assumed to have zero mean.

If we observe the outputs (regressors)

ϕ(k)>
.

= [y(k − 1) y(k − 2) · · · y(k − n)]

and we know the model parameters w>
.

= [w1 a2 · · · wn], we can predict the
output value at time k, as

ŷ(k) = ϕ(k)>w .

The prediction error is

ε(k) = y(k)− ŷ(k) = y(k)− ϕ(k)>w .

Fa18 18 / 33

AR models

Idea: Use observed data ϕ(1), . . . , ϕ(N) to estimate a value ŵ of the parameter a
which minimizes the prediction errors in LS sense.

That is, we solve

min
w

N∑
k=1

(y(k)− ϕ(k)>w)2

This is an OLS problem
min
a
‖y − Φw‖2

2,

with

y = [y(1) · · · y(N)]>, Φ =

 ϕ(1)>

...
ϕ(N)>

 .
Ridge regression is obtained by adding a `2 regularization parameter:

min
w
‖y − Φw‖2

2 + λ‖w‖2
2.

Fa18 19 / 33

Example

hourly temperature at LAX in May 2016, length 744;

average is 61.760F, standard deviation 3.05oF;

predictor ŷt+1 = yt gives RMS error 1.16oF;

AR model with M = 8 gives RMS error 0.98oF.

Solid line shows one-hour ahead
predictions from AR model, first 5 days.

Fa18 20 / 33

Kernel least-squares
Motivation: Nonlinear auto-regressive regression

Nonlinear auto-regressive model for time-series: yt quadratic function of yt−1, yt−2

yt = w1 + w2yt−1 + w3yt−2 + w4y
2
t−1 + w5yt−1yt−2 + w6y

2
t−2.

This writes yt = w>φ(xt), with φ(xt) the augmented feature vectors

φ(xt) :=
(
1, yt−1, yt−2, y

2
t−1, yt−1yt−2, y

2
t−2

)
.

Prediction rule is ŷT+1 = w>φ(xT+1).

Fa18 21 / 33

Nonlinear classification

Non-linear (e.g., quadratic) decision boundary

w1x1 + w2x2 + w3x
2
1 + w4x1x2 + w5x

2
2 + b = 0.

Writes w>φ(x) + b = 0, with φ(x) := (x1, x2, x
2
1 , x1x2, x

2
2).

Fa18 22 / 33

Challenges

In principle, it seems can always augment the dimension of the feature space to
make the data linearly separable. (See the video at
http://www.youtube.com/watch?v=3liCbRZPrZA)

How do we do it in a computationally efficient manner?

Fa18 23 / 33

http://www.youtube.com/watch?v=3liCbRZPrZA

Regularized learning problem

Regularized LS:
min
w
‖X>w − y‖2

2 + λ‖w‖2
2

where

X = [x1, . . . , xn] is a p × n matrix of data points.

y ∈ Rn contains a response vector (or labels).

w ∈ Rp contains classifier or regression coefficients.

λ ≥ 0 is a regularization parameter.

Prediction/classification rule: depends only on w>x , where x ∈ Rp is a new data
point.

Fa18 24 / 33

Key result

For the generic problem:

min
w

L(X>w , y) + λ‖w‖2
2

where L is any loss function, the optimal w lies in the span of the data points
(x1, . . . , xn):

w = Xv

for some vector v ∈ Rn.

Fa18 25 / 33

Proof
Fundamental theorem of linear algebra

For any matrix X ∈ Rp×n: every w ∈ Rp can be written as the sum of two
orthogonal vectors, one in the range of X and the other orthogonal to it:

w = Xv + r

where v ∈ Rn, and X>r = 0 (that is, r is in the nullspace N (X>)).

vectors and matrices 55

Since for any subspace S it holds that S⊥⊥ = S , taking the orthogonal
complement of both sides in the previous equation, we obtain that
N (A)⊥ = R(A�), hence

Rn = N (A) ⊕ N (A)⊥ = N (A) ⊕ R(A�).

This means that the input space Rn can be decomposed as the direct
sum of two orthogonal subspaces N (A) and R(A�). Since dim R(A�) =

dim R(A) = rank(A), and obviously dim Rn = n, we also obtain that

dim N (A) + rank(A) = n. (2.10)

With a similar reasoning, we argue that

R(A)⊥ = {y ∈ Rm : y�z = 0, ∀z ∈ R(A)}
= {y ∈ Rm : y�Ax = 0, ∀x ∈ Rn} = N (A�),

hence by taking orthogonal complement of both sides, we see that

R(A) = N (A�)⊥.

Therefore, the output space Rm is decomposed as

Rm = R(A) ⊕ R(A)⊥ = R(A) ⊕ N (A�),

and

dim N (A�) + rank(A) = m,

see a graphical exemplification in R3 in Figure 2.2.2.

Figure 2.26: Illustration
of the fundamental
theorem of linear
Algebra in R3; A =
[a1 a2].

Figure shows the case X = A = (a1, a2).

Fa18 26 / 33

Consequence of key result

For the generic problem: (here L is any “loss” function)

min
w

L(X>w) + λ‖w‖2
2

the optimal w can be written as w = Xv for some vector v ∈ Rn.

Hence training problem depends only on the n × n (PSD) matrix K := X>X :

min
v

L(Kv) + λv>Kv .

Fa18 27 / 33

Kernel matrix

The training problem depends only on the “kernel matrix” K = X>X

Kij = x>i xj , 1 ≤ i , j ≤ n.

That is, K contains the scalar products between all data point pairs.

The prediction/classification rule depends on the scalar products between new
point x and the training data points x1, . . . , xn:

w>x = v>X>x = v>k , k := X>x = (x>x1, . . . , x
>xn).

Computational advantage: Once K is formed (this takes O(n2p)), then the
training problem has only n variables. When p >> n, this leads to a dramatic
reduction in problem size.

Fa18 28 / 33

How about the nonlinear case?

In the nonlinear case, we simply replace the feature vectors xi by some
“augmented” feature vectors φ(xi), with φ a non-linear mapping.

Example: in classification with quadratic decision boundary, we use

φ(x) := (1, x1, x2, x
2
1 , x1x2, x

2
2).

This leads to the modified kernel matrix

Kij = φ(xi)
>φ(xj), 1 ≤ i , j ≤ n.

Fa18 29 / 33

The kernel function

The kernel function associated with mapping φ is

k(x , z) = φ(x)>φ(z).

It provides information about the metric in the feature space, e.g.:

‖φ(x)− φ(z)‖2
2 = k(x , x)− 2k(x , z) + k(z , z).

The computational effort involved in

solving the training problem;

making a prediction,

depends only on our ability to quickly evaluate such scalar products.

We can’t choose k arbitrarily; it has to satisfy the above for some φ.

Fa18 30 / 33

Quadratic kernels

Classification with quadratic boundaries involves feature vectors

φ(x) = (1, x1, x2, x
2
1 , x1x2, x

2
2).

Fact: given two vectors x , z ∈ R2, we have

φ(x)>φ(z) = (1 + x>z)2.

Fa18 31 / 33

Polynomial kernels

More generally when φ(x) is the vector formed with all the products between the
components of x ∈ Rn, up to degree d , then for any two vectors x , z ∈ Rn,

φ(x)>φ(z) = (1 + x>z)d .

Computational effort grows linearly in n.

This represents a dramatic reduction in speed over the “brute force” approach:

Form φ(x), φ(z);

evaluate φ(x)>φ(z).

Computational effort grows as nd .

Fa18 32 / 33

Other kernels

Gaussian kernel function:

k(x , z) = exp

(
−‖x − z‖2

2

2σ2

)
,

where σ > 0 is a scale parameter. Allows to ignore points that are too far apart.
Corresponds to a non-linear mapping φ to infinite-dimensional feature space.

There is a large variety (a zoo?) of other kernels, some adapted to structure of
data (text, images, etc).

Fa18 33 / 33

	Ordinary least-squares and minimum-norm solutions
	Ordinary least-squares
	Minimum-norm solutions to linear equations
	Solving LS problems
	Example

	Variants of least-squares
	Equality-constrained LS
	Weighted LS
	2-regularized LS
	Example: auto-regressive models

	Kernels for least-squares
	Motivations
	Kernel trick
	Examples of kernels

