Optimization Models

EECS 127 / EECS 227AT

Laurent El Ghaoui

EECS department
UC Berkeley

Fall 2018

LECTURE 8

Least-Squares and Variants

If others would but reflect on mathematical truths as deeply and continuously as I have, they would make my discoveries.

$$
\text { C.F. Gauss }(1777-1855)
$$

Outline

(1) Ordinary least-squares and minimum-norm solutions

- Ordinary least-squares
- Minimum-norm solutions to linear equations
- Solving LS problems
- Example
(2) Variants of least-squares
- Equality-constrained LS
- Weighted LS
- ℓ_{2}-regularized LS
- Example: auto-regressive models
(3) Kernels for least-squares
- Motivations
- Kernel trick
- Examples of kernels

Least-squares

Goal: given $A \in \mathbb{R}^{m \times n}, y \in \mathbb{R}^{m}$, find x such that $A x \approx y$.

Least-squares approach: use Euclidean norm, and solve the optimization problem

$$
\min _{x}\|A x-y\|_{2}
$$

Since the objective function is always ≥ 0, we can solve the "ordinary least-squares" problem

$$
\min _{x}\|A x-y\|_{2}^{2}=\sum_{i=1}^{m} r_{i}^{2}, r \doteq A x-y
$$

Geometric interpretation

As projection on a subspace

- Since vector $A x$ lies in $\mathcal{R}(A)$, the problem amounts to determining a point $\tilde{y}=A x^{*}$ in $\mathcal{R}(A)$ at minimum distance form y.
- The Projection Theorem then tells us that this point is indeed the orthogonal projection of y onto the subspace $\mathcal{R}(A)$.

Interpretation

As fitting a linear model

We can also interpret the problem in terms of the rows $a_{i}^{\top}, i=1, \ldots, m$, of A. The problem reads

$$
\min _{x}: \sum_{i=1}^{m}\left(y_{i}-a_{i}^{\top} x\right)^{2}
$$

In this sense, we are trying to fit of each component y_{i} as a linear combination of the corresponding input a_{i}, with x as the coefficients of this linear combination.

This interpretation is useful in the context of prediction: once the solution x^{*} to the above is found, we can "predict" the output corresponding to a new vector $a \in \mathbb{R}^{n}$ via the prediction rule

$$
\hat{y}=a^{\top} x^{*}
$$

Least-squares

Solution

- $y-A x^{*} \in \mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{\top}\right)$, hence

$$
A^{\top}\left(y-A x^{*}\right)=0
$$

- Solutions x^{*} to the LS problem must satisfy the Normal Equations:

$$
A^{\top} A x=A^{\top} y
$$

- This system always admits a solution.
- If A is full column rank (i.e., $\operatorname{rank}(A)=n$), then the solution is unique, and it is given by

$$
x^{*}=\left(A^{\top} A\right)^{-1} A^{\top} y .
$$

Set of solutions and the pseudoinverse

Corollary 1 (Set of solutions of LS problem)

The set of optimal solutions of the LS problem

$$
p^{*}=\min _{x}\|A x-y\|_{2}
$$

can be expressed as

$$
\mathcal{X}_{\mathrm{opt}}=A^{\dagger} y+\mathcal{N}(A)
$$

where $A^{\dagger} y$ is the minimum-norm point in the optimal set. The optimal value p^{*} is the norm of the projection of y onto orthogonal complement of $\mathcal{R}(A)$: for $x^{*} \in \mathcal{X}_{\mathrm{opt}}$,

$$
p^{*}=\left\|y-A x^{*}\right\|_{2}=\left\|\left(I_{m}-A A^{\dagger}\right) y\right\|_{2}=\left\|P_{\mathcal{R}(A) \perp} y\right\|_{2}
$$

where matrix $P_{\mathcal{R}(A)^{\perp}}$ is the projector onto $\mathcal{R}(A)^{\perp}$. If A is full column rank, then the solution is unique, and equal to

$$
x^{*}=A^{\dagger} y=\left(A^{\top} A\right)^{-1} A^{\top} y .
$$

Minimum-norm solutions to linear equations

- When matrix A has more columns than rows ($m<n$: underdetermined), and $y \in \mathcal{R}(A)$, we have that $\operatorname{dim} \mathcal{N}(A) \geq n-m>0$, hence the system $y=A x$ has infinite solutions and that the set of solutions is $\mathcal{S}_{\bar{x}}=\{x: x=\bar{x}+z, z \in \mathcal{N}(A)\}$, where \bar{x} is any vector such that $A \bar{x}=y$.
- We single out from $\mathcal{S}_{\bar{x}}$ the one solution x^{*} with minimal Euclidean norm. That is, we solve

$$
\min _{x: A x=y}\|x\|_{2}
$$

which is equivalent to $\min _{x \in \mathcal{S}_{\bar{x}}}\|x\|_{2}$.

- The solution x^{*} must be orthogonal to $\mathcal{N}(A)$ or, equivalently, $x^{*} \in \mathcal{R}\left(A^{\top}\right)$, which means that $x^{*}=A^{\top} \xi$, for some suitable ξ.
- Since x^{*} must solve the system of equations, it must be $A x^{*}=y$, i.e., $A A^{\top} \xi=y$.
- If A is full row rank, $A A^{\top}$ is invertible and the unique ξ that solves the previous equation is $\xi=\left(A A^{\top}\right)^{-1} y$. This finally gives us the unique minimum-norm solution of the system:

$$
x^{*}=A^{\top}\left(A A^{\top}\right)^{-1} y .
$$

Solution of OLS via QR

Assume columns of $m \times n A$ are linearly independent, hence QR factorization $A=Q R$ exists, with

- $m \times n$ matrix Q satisfies $Q^{\top} Q=I$;
- $n \times n$ matrix R invertible;
- then $A^{\dagger}=\left(A^{\top} A\right)^{-1} A^{\top}=R^{-1} Q^{\top}$.

Algorithm:

- compute $Q R$ factorization of $m \times n A: A=Q R$ ($2 m n^{2}$ flops);
- form $z=Q^{\top} y$ (2mn flops);
- solve triangular system $R x=z$ via backward substitution.

Results:

- total complexity $2 m n^{2}$ flops;
- identical to algorithm for solving $A x=b$ for square invertible A;
- when A is tall $(m \gg n)$, gives least squares approximate solution to $A x=b$.

Example

Advertising purchases ${ }^{1}$

- m demographics groups we want to advertise to;
- $v_{\text {des }}$ is m-vector of target views or impressions;
- n-vector s gives spending on n advertising channels;
- $m \times n$ matrix R gives demographic reach of channels, with $R_{i j}$ the number of views per dollar spent (in $1000 / \$$);
- $v=R s$ is m-vector of views across demographic groups;
- well use least squares spending: $\hat{v}=R^{\dagger} s$.

[^0]
Example

Advertising purchases

- $m=10$ groups, $n=3$ channels
- target views vector $v_{\text {des }}=10^{3} 1$
- LS spending: $\hat{s}=(62,100,1443)$.

Variants of ordinary LS

Linear equality-constrained LS

- A generalization of the basic LS problem allows for the addition of linear equality constraints on the x variable, resulting in the constrained problem

$$
\min _{x}\|A x-y\|_{2}^{2}, \quad \text { s.t. } C x=d
$$

where $C \in \mathbb{R}^{p, n}$ and $d \in \mathbb{R}^{p}$.

- This problem can be converted into a standard LS one, by "eliminating" the equality constraints, via a standard procedure. Suppose the problem is feasible, and let \bar{x} be such that $C \bar{x}=d$.
- All feasible points are expressed as $x=\bar{x}+N z$, where N contains by columns a basis for $\mathcal{N}(C)$, and z is a new variable.
- Problem becomes unconstrained in variable z :

$$
\min _{z}\|\bar{A} z-\bar{y}\|_{2}^{2}
$$

where $\bar{A} \doteq A N, \bar{y} \doteq y-A \bar{x}$.

Variants of the least-squares problem

Weighted LS

- The standard LS objective is a sum of squared equation residuals

$$
\|A x-y\|_{2}^{2}=\sum_{i=1}^{m} r_{i}^{2}, \quad r_{i}=a_{i}^{\top} x-y_{i} .
$$

- In some cases, the equation residuals may not be given the same importance, and this relative importance can be modeled by introducing weights into the LS objective, that is $f_{0}(x)=\sum_{i=1}^{m} w_{i}^{2} r_{i}^{2}$, where $w_{i} \geq 0$ are the given weights. This objective is rewritten as

$$
f_{0}(x)=\|W(A x-y)\|_{2}^{2}=\left\|A_{w} x-y_{w}\right\|_{2}^{2},
$$

where

$$
W=\operatorname{diag}\left(w_{1}, \ldots, w_{m}\right), \quad A_{w} \doteq W A, y_{w}=W y .
$$

- The weighted LS problem still has the structure of a standard LS problem, with row-weighted matrix A_{w} and vector y_{w}.

Variants of the least-squares problem

ℓ_{2}-regularized LS

- Regularized LS refer to a class of problems of the form

$$
\min _{x}\|A x-y\|_{2}^{2}+\phi(x)
$$

where a "regularization," or penalty, term $\phi(x)$ is added to the usual LS objective.

- In the most usual cases, ϕ is proportional either to the ℓ_{1} or to the ℓ_{2} norm of x. The ℓ_{1}-regularized case gives rise to the LASSO problem, which is discussed in more detail later. The ℓ_{2}-regularized case is instead discussed next:

$$
\min _{x}\|A x-y\|_{2}^{2}+\lambda\|x\|_{2}^{2}, \quad \lambda \geq 0
$$

Variants of the least-squares problem

ℓ_{2}-regularized LS

$$
\min _{x}\|A x-y\|_{2}^{2}+\lambda\|x\|_{2}^{2}, \quad \lambda \geq 0
$$

- Recalling that the squared Euclidean norm of a block-partitioned vector is equal to the sum of the squared norms of the blocks, i.e.,

$$
\left\|\left[\begin{array}{l}
a \\
b
\end{array}\right]\right\|_{2}^{2}=\|a\|_{2}^{2}+\|b\|_{2}^{2}
$$

we see that the regularized LS problem can be rewritten in the format of a standard LS problem as follows

$$
\|A x-y\|_{2}^{2}+\lambda\|x\|_{2}^{2}=\|\tilde{A} x-\tilde{y}\|_{2}^{2}
$$

where

$$
\tilde{A} \doteq\left[\begin{array}{c}
A \\
\sqrt{\lambda} I_{n}
\end{array}\right], \quad \tilde{y} \doteq\left[\begin{array}{c}
y \\
0_{n}
\end{array}\right]
$$

- $\lambda \geq 0$ is a tradeoff parameter. Interpretation in terms of tradeoff between output tracking accuracy and input effort.

How to choose the regularization parameter?

Choosing a good value of λ is crucial. To each value corresponds a different prediction rule (that is, a model), where a new point a is given a predicted output $\hat{y}=a^{\top} x^{*}(\lambda)$, with

$$
x^{*}(\lambda):=\arg \min _{x}\|A x-y\|_{2}^{2}+\lambda\|x\|_{2}^{2} .
$$

For a given λ :

- split original data into a training set and a test set (typical split: $80 \% / 20 \%$);
- build (train) model on training data set; then check the models predictions on the test data set;
- if they are similar, we can guess the model will work well on unseen data, a desirable "generalization" property.

Example

Auto-regressive models

- Auto-Regressive (AR) models try to describe a time series $y(k), k=0,1, \ldots$, according to the model

$$
y(k)=w_{1} y(k-1)+\cdots+w_{n} y(k-n)+e(k)
$$

where $e(k)$ is an error term, assumed to have zero mean.

- If we observe the outputs (regressors)

$$
\varphi(k)^{\top} \doteq[y(k-1) y(k-2) \cdots y(k-n)]
$$

and we know the model parameters $w^{\top} \doteq\left[\begin{array}{llll}w_{1} & a_{2} & \cdots & w_{n}\end{array}\right]$, we can predict the output value at time k, as

$$
\hat{y}(k)=\varphi(k)^{\top} w .
$$

- The prediction error is

$$
\epsilon(k)=y(k)-\hat{y}(k)=y(k)-\varphi(k)^{\top} w .
$$

AR models

- Idea: Use observed data $\varphi(1), \ldots, \varphi(N)$ to estimate a value \hat{w} of the parameter a which minimizes the prediction errors in LS sense.
- That is, we solve

$$
\min _{w} \sum_{k=1}^{N}\left(y(k)-\varphi(k)^{\top} w\right)^{2}
$$

- This is an OLS problem

$$
\min _{a}\|y-\Phi w\|_{2}^{2}
$$

with

$$
y=[y(1) \cdots y(N)]^{\top}, \quad \Phi=\left[\begin{array}{c}
\varphi(1)^{\top} \\
\vdots \\
\varphi(N)^{\top}
\end{array}\right]
$$

- Ridge regression is obtained by adding a ℓ_{2} regularization parameter:

$$
\min _{w}\|y-\Phi w\|_{2}^{2}+\lambda\|w\|_{2}^{2} .
$$

Example

- hourly temperature at LAX in May 2016, length 744;
- average is $61.76^{\circ} \mathrm{F}$, standard deviation $3.05^{\circ} \mathrm{F}$;
- predictor $\hat{y}_{t+1}=y_{t}$ gives RMS error $1.16^{\circ} \mathrm{F}$;
- AR model with $M=8$ gives RMS error $0.98^{\circ} \mathrm{F}$.

Solid line shows one-hour ahead predictions from AR model, first 5 days.

Kernel least-squares

Motivation: Nonlinear auto-regressive regression
Nonlinear auto-regressive model for time-series: y_{t} quadratic function of y_{t-1}, y_{t-2}

$$
y_{t}=w_{1}+w_{2} y_{t-1}+w_{3} y_{t-2}+w_{4} y_{t-1}^{2}+w_{5} y_{t-1} y_{t-2}+w_{6} y_{t-2}^{2}
$$

This writes $y_{t}=w^{\top} \phi\left(x_{t}\right)$, with $\phi\left(x_{t}\right)$ the augmented feature vectors

$$
\phi\left(x_{t}\right):=\left(1, y_{t-1}, y_{t-2}, y_{t-1}^{2}, y_{t-1} y_{t-2}, y_{t-2}^{2}\right)
$$

Prediction rule is $\hat{y}_{T+1}=w^{\top} \phi\left(x_{T+1}\right)$.

Nonlinear classification

Non-linear (e.g., quadratic) decision boundary

$$
w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{1}^{2}+w_{4} x_{1} x_{2}+w_{5} x_{2}^{2}+b=0 .
$$

Writes $w^{\top} \phi(x)+b=0$, with $\phi(x):=\left(x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)$.

Challenges

In principle, it seems can always augment the dimension of the feature space to make the data linearly separable. (See the video at http://www.youtube.com/watch?v=3liCbRZPrZA)

How do we do it in a computationally efficient manner?

Regularized learning problem

Regularized LS:

$$
\min _{w}\left\|X^{\top} w-y\right\|_{2}^{2}+\lambda\|w\|_{2}^{2}
$$

where

- $X=\left[x_{1}, \ldots, x_{n}\right]$ is a $p \times n$ matrix of data points.
- $y \in \mathbb{R}^{n}$ contains a response vector (or labels).
- $w \in \mathbb{R}^{p}$ contains classifier or regression coefficients.
- $\lambda \geq 0$ is a regularization parameter.

Prediction/classification rule: depends only on $w^{\top} x$, where $x \in \mathbb{R}^{p}$ is a new data point.

Key result

For the generic problem:

$$
\min _{w} L\left(X^{\top} w, y\right)+\lambda\|w\|_{2}^{2}
$$

where L is any loss function, the optimal w lies in the span of the data points $\left(x_{1}, \ldots, x_{n}\right)$:

$$
w=X v
$$

for some vector $v \in \mathbb{R}^{n}$.

Proof

Fundamental theorem of linear algebra
For any matrix $X \in \mathbb{R}^{p \times n}$: every $w \in \mathbb{R}^{p}$ can be written as the sum of two orthogonal vectors, one in the range of X and the other orthogonal to it:

$$
w=X v+r
$$

where $v \in \mathbb{R}^{n}$, and $X^{\top} r=0$ (that is, r is in the nullspace $\mathcal{N}\left(X^{\top}\right)$).

Figure shows the case $X=A=\left(a_{1}, a_{2}\right)$.

Consequence of key result

For the generic problem: (here L is any "loss" function)

$$
\min _{w} L\left(X^{\top} w\right)+\lambda\|w\|_{2}^{2}
$$

the optimal w can be written as $w=X v$ for some vector $v \in \mathbb{R}^{n}$.

Hence training problem depends only on the $n \times n(P S D)$ matrix $K:=X^{\top} X$:

$$
\min _{v} L(K v)+\lambda v^{\top} K v .
$$

Kernel matrix

The training problem depends only on the "kernel matrix" $K=X^{\top} X$

$$
K_{i j}=x_{i}^{\top} x_{j}, \quad 1 \leq i, j \leq n .
$$

That is, K contains the scalar products between all data point pairs.

The prediction/classification rule depends on the scalar products between new point x and the training data points x_{1}, \ldots, x_{n} :

$$
w^{\top} x=v^{\top} X^{\top} x=v^{\top} k, \quad k:=X^{\top} x=\left(x^{\top} x_{1}, \ldots, x^{\top} x_{n}\right) .
$$

Computational advantage: Once K is formed (this takes $O\left(n^{2} p\right)$), then the training problem has only n variables. When $p \gg n$, this leads to a dramatic reduction in problem size.

How about the nonlinear case?

In the nonlinear case, we simply replace the feature vectors x_{i} by some "augmented" feature vectors $\phi\left(x_{i}\right)$, with ϕ a non-linear mapping.

Example: in classification with quadratic decision boundary, we use

$$
\phi(x):=\left(1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right) .
$$

This leads to the modified kernel matrix

$$
K_{i j}=\phi\left(x_{i}\right)^{\top} \phi\left(x_{j}\right), \quad 1 \leq i, j \leq n .
$$

The kernel function

The kernel function associated with mapping ϕ is

$$
k(x, z)=\phi(x)^{\top} \phi(z) .
$$

It provides information about the metric in the feature space, e.g.:

$$
\|\phi(x)-\phi(z)\|_{2}^{2}=k(x, x)-2 k(x, z)+k(z, z) .
$$

The computational effort involved in

- solving the training problem;
- making a prediction, depends only on our ability to quickly evaluate such scalar products.

We can't choose k arbitrarily; it has to satisfy the above for some ϕ.

Quadratic kernels

Classification with quadratic boundaries involves feature vectors

$$
\phi(x)=\left(1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right) .
$$

Fact: given two vectors $x, z \in \mathbb{R}^{2}$, we have

$$
\phi(x)^{\top} \phi(z)=\left(1+x^{\top} z\right)^{2} .
$$

Polynomial kernels

More generally when $\phi(x)$ is the vector formed with all the products between the components of $x \in \mathbb{R}^{n}$, up to degree d, then for any two vectors $x, z \in \mathbb{R}^{n}$,

$$
\phi(x)^{\top} \phi(z)=\left(1+x^{\top} z\right)^{d} .
$$

Computational effort grows linearly in n.

This represents a dramatic reduction in speed over the "brute force" approach:

- Form $\phi(x), \phi(z)$;
- evaluate $\phi(x)^{\top} \phi(z)$.

Computational effort grows as n^{d}.

Other kernels

Gaussian kernel function:

$$
k(x, z)=\exp \left(-\frac{\|x-z\|_{2}^{2}}{2 \sigma^{2}}\right),
$$

where $\sigma>0$ is a scale parameter. Allows to ignore points that are too far apart. Corresponds to a non-linear mapping ϕ to infinite-dimensional feature space.

There is a large variety (a zoo?) of other kernels, some adapted to structure of data (text, images, etc).

[^0]: ${ }^{1}$ from http://web.stanford.edu/~boyd/vmls/vmls-slides .pdf.

