EECS C128/ ME C134 Final Fri. Dec. 18, 2015 1910-2200 pm

Name:_		
SID:	_	

- Closed book. One page, 2 sides of formula sheets. No calculators.
- There are 6 problems worth 100 points total.

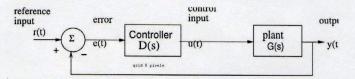
Problem	Points	Score
1	15	
2	16	
3	18	
4	20	
5	16	
6	15	
Total	100	

In the real world, unethical actions by engineers can cost money, careers, and lives. The penalty for unethical actions on this exam will be a grade of 'F' and a letter will be written for your file and to the Office of Student Conduct.

$\tan^{-1}\frac{1}{10} = 5.7^{\circ}$	$\tan^{-1}\frac{1}{5} = 11.3^{\circ}$
$\tan^{-1}\frac{1}{4} = 14^{\circ}$	$\tan^{-1}\frac{1}{3} = 18.4^{\circ}$
$\tan^{-1}\frac{1}{2} = 26.6^{\circ}$	$\tan^{-1}\frac{1}{\sqrt{3}} = 30^{\circ}$
$\tan^{-1}1 = 45^{\circ}$	$\tan^{-1}\sqrt{3} = 60^{\circ}$
$\sin 30^\circ = \frac{1}{2}$	$\cos 30^\circ = \frac{\sqrt{3}}{2}$

$20 \log_{10} 1 = 0 dB$	$20\log_{10} 2 = 6dB$	$\pi \approx 3.14$
$20\log_{10}\sqrt{2} = 3dB$	$20\log_{10}\frac{1}{2} = -6dB$	$2\pi \approx 6.28$
$20\log_{10} 5 = 20db - 6dB = 14dB$	$20\log_{10}\sqrt{10} = 10 \text{ dB}$	$\pi/2 \approx 1.57$
$1/e \approx 0.37$	$\sqrt{10} \approx 3.164$	$\pi/4 \approx 0.79$
$1/e^2 \approx 0.14$	$\sqrt{2} \approx 1.41$	$\sqrt{3} \approx 1.73$
$1/e^3 \approx 0.05$	$1/\sqrt{2} \approx 0.71$	$1/\sqrt{3} \approx 0.58$

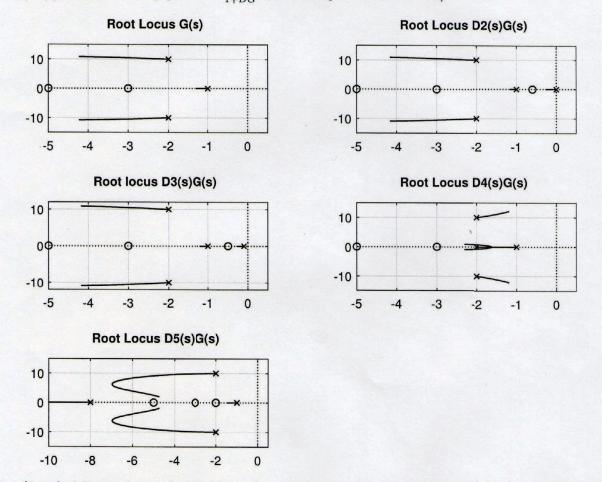
Problem 1 (15 pts)



You are given the open-loop plant:

$$G(s) = \frac{5(s+5)(s+3)}{(s+1)(s^2+4s+104)}.$$

For the above system, the partial root locus is shown for 5 different controller/plant combinations, $G(s), D_2(s)G(s), ..., D_5(s)G(s)$. (Note: the root locus shows open-loop pole locations for D(s)G(s), and closed-loop poles for $\frac{DG}{1+DG}$ are at end points of branches).



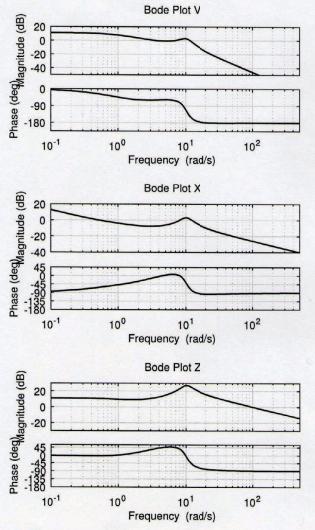
[5 pts] a) For each set of open-loop poles and zeros given above, choose the best corresponding open-loop Bode plot V,W,X,Y, or Z from the next page:

(i) G(s): Bode Plot Υ

- (ii) $D_2(s)G(s)$: Bode plot X
- (iii) $D_3(s)G(s)$: Bode plot \underline{W}
- (iv) $D_4(s)G(s)$: Bode Plot \underline{V}
- (v) $D_5(s)G(s)$: Bode Plot $\underline{\sim}$

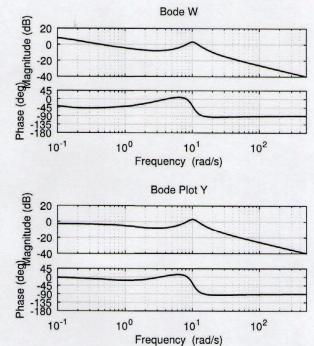
Problem 1, cont.

The open-loop Bode plots for 5 different controller/plant combinations, $D_1(s)G(s), ..., D_5(s)G(s)$ are shown below.



[5 pts] b) For the Bode plots above:

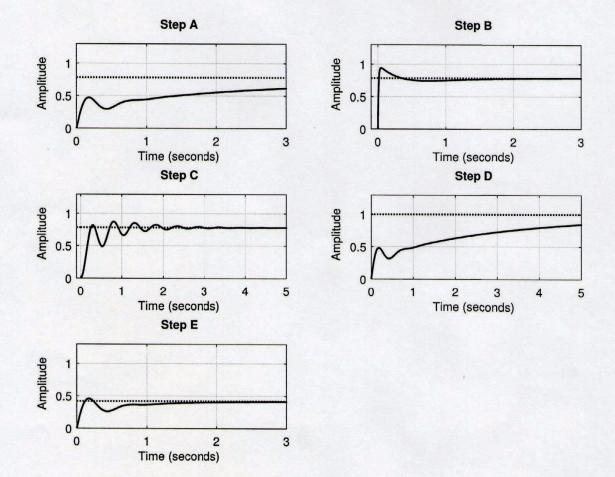
- (i) Bode plot V: phase margin $\frac{40}{20}$ (degrees) at $\omega = \frac{11^{rad}}{5}$ Bode plot V: gain margin $\frac{20}{c}$ dB at $\omega = \frac{23}{c}$ and $\zeta = \frac{3}{c}$
- (ii) Bode plot Z: phase margin $\underline{90}$ (degrees) at $\omega = \underline{100}$ Bode plot Z: gain margin $\underline{90}$ dB at $\omega = \underline{--}$



Problem 1, cont.

[5 pts] c) For each closed loop controller/plant with root locus as given in part a), choose the best corresponding closed-loop step response (A-E). (Note: dashed line shows final value.)

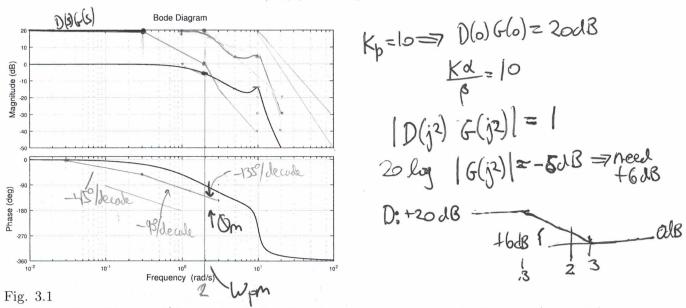
- (i) G(s): step response \underline{E}
- (ii) $D_2(s)G(s)$: step response \square
- (iii) $D_3(s)G(s)$: step response <u>A</u> (iv) $D_4(s)G(s)$: step response <u>C</u>
- (v) $D_5(s)G(s)$: step response <u>B</u>



Problem 2 (16 pts)

The open-loop system is given by $G(s) = \frac{400}{(s+2)^2(s^2+2s+101)}$, and Bode plot for G(s) is here:

FIS



Key.

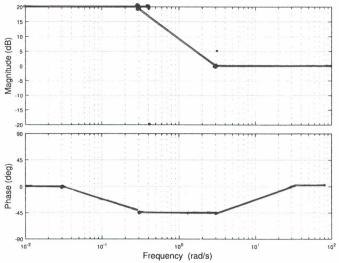
update.?

A lag controller $D(s) = k \frac{s+\alpha}{s+\beta}$ is to be designed such that the unity gain feedback system with openloop transfer function D(s)G(s) has static error constant $K_p = 10$. D(s)G(s) should have a nominal (asymptotic approximation) phase margin $\phi_m \approx 40^\circ$ at $\omega = 2$ rad s^{-1} . [6 pts] a. Determine gain, zero, and pole location for the lag network D(s):

[0 pts] a. Determine gain, zero, and pole location for the lag network D(

gain k = 1 zero: $\alpha = 3$ pole: $\beta = .3$

[4 pts] b. Sketch the asymptotic Bode plot for the lag network D(s) alone on the plot below: Bode Diagram for lag network, D(s)



[4 pts] c. Sketch the asymptotic Bode plot for the combined lag network and plant D(s)G(s) on the plot (Fig. 3.1) above.

[2 pts] d. Mark the phase and phase margin frequency on the plot of D(s)G(s) (Fig. 3.1).

Problem 3 (18 pts)

[2 pt] a. Given the homogeneous linear differential equation $\dot{\mathbf{x}} = A\mathbf{x}$ with initial condition $\mathbf{x}(0) = \mathbf{x}_o$. Show that the solution $\mathbf{x}(t) = e^{At}\mathbf{x}_o$ satisfies both conditions.

$$\frac{1}{dt} (X(t)) = A e^{At} X_{0}$$

$$= A x(t)$$

$$\lim_{t \to 0} t(t) = \lim_{t \to 0} e^{At} X_{0}$$

$$= X_{0} \sqrt{2}$$

$$\lim_{t \to 0} t(t) = \lim_{t \to 0} e^{At} X_{0}$$

$$= X_{0} \sqrt{2}$$

$$\lim_{t \to 0} t(t) = \lim_{t \to 0} e^{At} X_{0}$$

$$= X_{0} \sqrt{2}$$

$$\lim_{t \to 0} t(t) = \lim_{t \to 0} e^{At} X_{0}$$

$$= X_{0} \sqrt{2}$$

$$\lim_{t \to 0} t(t) = \lim_{t \to 0} e^{At} X_{0}$$

$$= X_{0} \sqrt{2}$$

$$\lim_{t \to 0} t(t) = \lim_{t \to 0} e^{At} X_{0}$$

$$= X_{0} \sqrt{2}$$

[2 pt] b. Show that e^{At} must equal $\mathcal{L}^{-1}[sI - A]^{-1}$. (Hint: see part a. above.)

$$\chi = AX$$

 $\chi = AX$
 $\chi = AX$
 $(5I-A)X(5) = X_0$
 $X(4) = \chi^{-1} \{ (5I-A)^{-1} \} X_0$

[2 pts] c. Given
$$\bar{A} = \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix}$$
, find $e^{\bar{A}t}$
$$e^{\bar{A}t} = \begin{bmatrix} e^{\lambda_1 \dagger} & 0\\ 0 & e^{\lambda_2 \dagger} \end{bmatrix}$$

[4 pts] d. Given \bar{A}, A, P such that $\bar{A} = P^{-1}AP$ is diagonal, and given $e^{\bar{A}t}$. Also given the state vector $x = P\bar{x}$. Show how to find e^{At} given $\bar{A}, A, P, e^{\bar{A}t}$, starting from $\dot{\bar{x}} = \bar{A}\bar{x}$. (Leave in general form.)

$$e^{At} = \frac{Pe^{\overline{A}+P^{-1}}}{\overline{X} = \overline{A}\overline{X}}$$

$$\overline{X} = e^{\overline{A}+}\overline{X}_{0}$$

$$P^{T}X = e^{\overline{A}+}P^{-1}X_{0}$$

$$X^{-}Pe^{\overline{A}+}P^{-1}X_{0}$$

$$f(com \ absule)$$

$$X = exp(A+)x_{0}$$

$$\Longrightarrow e^{A+} = Pe^{\overline{A}+}P^{-1}$$

$$e^{A+} = Pe^{\overline{A}+}P^{-1}$$

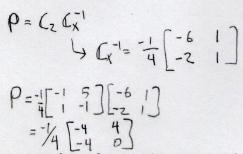
Problem 3, cont.

Given the two LTI systems

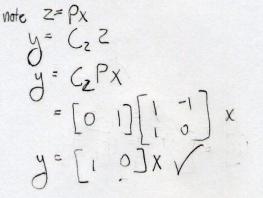
$$\dot{\mathbf{x}}(t) = A\mathbf{x} + Bu = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u, \quad y = C\mathbf{x} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$\dot{\mathbf{z}}(t) = A_z \mathbf{z} + B_z u = \begin{bmatrix} -3 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u, \quad y = C_z \mathbf{z} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

[4 pts] e. Find a transformation P such that $A = P^{-1}A_zP$ is diagonal. (Hint: this could be found using the controllability matrix for each system.)

	[]]	1	$C_{X} = \begin{bmatrix} 1 & -1 \\ 2 & -6 \end{bmatrix}$
<i>P</i> =		-1	$C_2 = \begin{bmatrix} 1 & 5 \\ 1 & -1 \end{bmatrix}$



[4 pts] f. Show that both systems have the same input-output behavior. That is, for the same input u(t), the output y(t) will be identical for both systems. Use P from part e, and also verify B_z and C_z are correct.



$$\rho^{-1} = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$$

$$\dot{z} = A_{z}z + B_{z}u$$

$$P_{x} = A_{z}P_{x} + B_{z}u$$

$$\dot{x} = P^{-1}A_{z}P_{x} + P^{-1}B_{z}u$$

$$= A_{x} + \frac{1}{2}\begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}\begin{bmatrix} -1 \\ 1 \end{bmatrix} u$$

$$\dot{x} = A_{x} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u$$

Problem 4. (20 pts)

Given the LTI system

$$\dot{\mathbf{x}}(t) = A\mathbf{x} + Bu = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \qquad \qquad y = C\mathbf{x} = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x},$$

[3 pts] a. Find $\mathbf{k} = [k_1 \ k_2]$ such that with state feedback $u = r - \mathbf{kx}$, the closed-loop poles of the system are at λ_1, λ_2 .

[1 pts] b. The initial condition is $\mathbf{x}(0) = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$. For r(t) a unit step input, it is required that $x_1(t) < 1 \forall t$, that is over shoot is not allowed.

What is range of λ_1, λ_2 to avoid over shoot?

$$\lambda; < 0, \quad \lambda; \in \mathbb{R}$$

[3 pts] c. Assume $\mathbf{k} = [k_1 \ k_2] = [4 \ 5]$. Let $e(t) = r(t) - C\mathbf{x}$. For r(t) a unit step input, find the steady state error.

[3 pts] d. For $\mathbf{k} = [k_1 \ k_2] = [4 \ 5]$, with $u = r - \mathbf{kx}$, find $\frac{Y(s)}{R(s)}$. (Express the transfer function as a ratio of polynomials, not as matrix operations.)

$$\frac{Y(s)}{R(s)} = \frac{\overline{s^{2} + 5s + 4}}{\frac{Y(s)}{R(s)}} = \left(\left(sI - A_{d} \right)^{-1} B - \frac{1}{\Delta^{20}(s)} \left[\frac{s + 5}{-4} - \frac{1}{5} \right] \right)$$

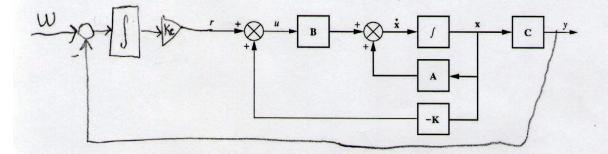
$$\left(\left(sI - A_{d} \right)^{-1} B - \frac{1}{5^{2} + 5s + 4} \right)$$

Problem 4, cont. (20 pts)

[4 pts] e. Define $e_w(t)$ to be the error between an input w(t) and output y(t). That is, $e_w(t) = w(t) - y(t)$. We desire to find an input r(w, y) to the state feedback system shown below in part f such that $\lim_{t\to\infty} e_w(t) = 0$ for a step input w(t) of any amplitude.

$$r(w,y) = \frac{k_e}{\omega} \int (\omega(\mathcal{Z}) - y(\mathcal{Z})) d\mathcal{Z}$$

[2 pts] f. Using the controller from part e, expand the block diagram below to include the controller and input w.



[4 pts] g. Assume the overall control system is stable, and refer to the expanded block diagram above. Describe in words why $\lim_{t\to\infty} e_w(t) = 0$ for a step input w(t).

Problem 5. 13 pts

Given the following system model:

$$\dot{\mathbf{x}} = A\mathbf{x} + Bu = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -k_2 & 1 \\ 0 & -k_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \qquad y = C\mathbf{x} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

[2 pts] a. Determine if the system A, B, C is controllable, and restrictions if any on k_1, k_2 for controllability.

$$C = \begin{bmatrix} B & | AB \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & -k_1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & -k_1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & -k_1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & -k_1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & -k_1 \end{bmatrix}$$

[2 pts] b. Determine if the system A, B, C is observable, and restrictions if any on k_1, k_2 for observability.

$$C = \begin{bmatrix} C \\ CA \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -R_2 & 1 \end{bmatrix}$$
So Completely Observable
$$\forall k_1, k_2 \in \mathbb{R}$$

[2 pts] c. Provide state equations for an observer which takes as inputs u(t), y(t), and provides an estimate of the state $\hat{\mathbf{x}}(t)$.

$$\hat{\hat{X}} = A\hat{x} + Bu + L(\gamma - \gamma)$$

$$\hat{\gamma} = C\hat{x}$$

[6 pts] d. Given $k_1 = 1, k_2 = 4$, find observer gain L such that the observer has closed loop poles at $s_1 = -10, s_2 = -10$.

 $L = \begin{bmatrix} l_{1} \\ l_{2} \end{bmatrix} = \begin{bmatrix} 15^{-} \\ 81 \end{bmatrix} = |SI - \overline{A}| = (S + (4 + l_{1}))(S + 1) + l_{2}$ $= S^{2} + (l_{1} + 5)S + (l_{1} + l_{2} + 4)$ $\overline{A} = A - LC \qquad (S + 10)(S + 10) = S^{2} + 20S + 100$ $= \begin{bmatrix} -4 & 1 \\ 0 & -1 \end{bmatrix} - \begin{bmatrix} l_{1} \\ l_{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}$ $= \begin{bmatrix} -l_{1} - 4 & 1 \\ -l_{2} & -1 \end{bmatrix} = \begin{bmatrix} l_{1} \\ l_{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}$ $= \begin{bmatrix} -l_{1} - 4 & 1 \\ -l_{2} & -1 \end{bmatrix} = \begin{bmatrix} l_{1} \\ l_{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}$ $= \begin{bmatrix} -l_{1} - 4 & 1 \\ -l_{2} & -1 \end{bmatrix} = \begin{bmatrix} l_{1} \\ l_{2} \end{bmatrix} =$

Problem 5, cont.

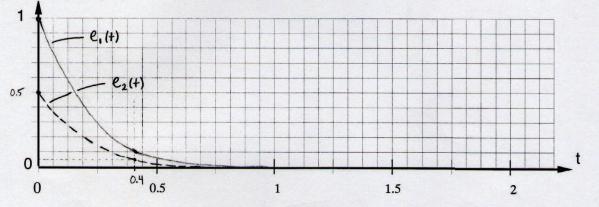
[4 pts] e. Let the error between the estimated state and the true state be given by $\mathbf{e}(t) = \hat{\mathbf{x}} - \mathbf{x}$. Find the dynamics of the error in terms of A, B, C, L.

$$\dot{\mathbf{e}} = (A - LC) \mathbf{e}$$

[4 pts] f. Given initial conditions

$$\mathbf{x} = \begin{bmatrix} 1\\ 0.5 \end{bmatrix} \text{ and } \hat{\mathbf{x}} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

Sketch approximately $e_1(t), e_2(t)$ for $t \ge 0$. (Hint: consider dynamics of observer compared to dynamics of plant.)



Given:

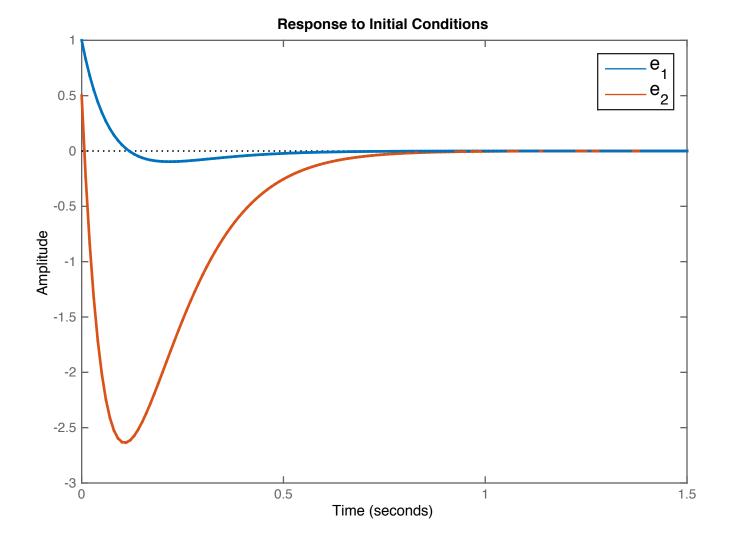
$$\overset{\circ}{\underline{e}} = (A - LC) \underbrace{\underline{e}}_{\text{with closed loop }}$$

 $\overset{\circ}{\underline{c}}_{\text{critically damped}}$

 $\overset{\circ}{\underline{e}}_{(0)} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$

poles @ s=-10,-10 Accepted for Full Credit ... True response has Zeros and the initial response is on the next page.

 $T_s = 4/\sigma_D = 4/10 = 0.4$ sec to 90% settle (Dynamics of e(1) are independent from plant dynamics by separability)



Problem 6 (8 pts)

[4 pts] a. Given the discrete time system below, find $\mathbf{X}(z)$ the z-transform of $\mathbf{x}(k)$, where $u(k) = (\frac{1}{2})^k$ for $k \ge 0$.

$$\mathbf{x}(k+1) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

$$\mathbf{X}(z) = \begin{bmatrix} \frac{1}{2}(2)(2-\frac{1}{2}) \\ \frac{1}{2}(2-\frac{1}{2}) \end{bmatrix}$$

$$\begin{pmatrix} \chi(z) = (\overline{z} \mathbf{I} - \overline{G})^{-1} (H \mathcal{U}_{(2)} + \chi[0] \mathbf{Z}) \\ = (\overline{z} \mathbf{I} - \overline{G})^{-1} (H) (\frac{\overline{z}}{\overline{z} - \frac{1}{2}})$$

$$= \begin{bmatrix} \overline{z} & -1 \\ 0 & \overline{z} \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ \overline{z}/(\overline{z} - \frac{1}{2}) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2}(\frac{1}{z} - \frac{1}{z}) \\ \frac{1}{z} - \frac{1}{z} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{z} - \frac{1}{z} \end{bmatrix}$$

TTP J

$$\mathbf{x}(k+1) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

Determine the response of the system to u(k) a unit step input.

[4 pts] c. Given

$$X(z) = \frac{z^2}{(z - \frac{1}{2})(z - 1)}$$

find x(k) for $k \ge 0$.

$$x(k) = -(1/2)^{k} + 2u(k)$$

$$\frac{\chi_{(z)}}{z} = \frac{z}{(z - 1/2)(z - 1)} = \frac{A}{(z - 1/2)} + \frac{B}{(z - 1)}$$

$$z = A(z - 1) + B(z - 1/2)$$

$$z = 1 = 1 - B(1/2) \Rightarrow B = 2$$

$$z = 1/2 = 1/2 = A(-1/2) \Rightarrow A = -1$$

$$\chi_{(z)} = \frac{-z}{(z - 1/2)} + \frac{2z}{(z - 1)}$$

$$\chi_{(k)} = -(1/2) + 2u(k)$$

$$12$$

Problem 6, cont.)

[4 pts] d. Given

$$X(z) = \frac{z}{(z - \frac{1}{2})(z - 1)(z - \frac{2}{5})}$$

find $\lim_{k\to\infty} x(k) = \frac{10/3}{3}$

[4 pts] e. Given a mass m, and input force f, $\ddot{x} = f/m$. Let the state x_1 be the position and x_2 velocity of the mass. The continuous time state equations for the system are :

$$\dot{\mathbf{x}} = A\mathbf{x} + Bf = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} f(t),$$

Find the discrete time equivalent system using zero-order hold for input force f(t) and sampling period T: $\mathbf{x}((k+1)T) = G\mathbf{x}(kT) + Hf(kT)$.

$$G = \begin{bmatrix} 1 & T \\ \hline 0 & 1 \end{bmatrix} \qquad \qquad H = \begin{bmatrix} T^2/2m \\ \hline T/m \end{bmatrix}$$