$x_3 = \dot{x}_2 = \dot{x}_3$ $x_4 = \dot{x}_3 = \dot{x}_3$

 $x_4 = \frac{d^4x}{d^4x} = u - 3x - x$

Problem 1 (25 pts)

Each part is independent.

[7 pts] a) Consider a single-input single-output system with input u(t) and output y(t) described by the block diagram below with coefficients as given. (Note that this diagram is a modified version of the Lec#3 handout.)

$$a_0 = 1$$
 $a_1 = 0$ $a_2 = 3$ $a_3 = 0$ $a_4 = 0$ $a_5 = 0$ $a_6 = 0$ a_6

[3 pts] i) Write the transfer function for the system:

$$\frac{Y(s)}{U(s)} = \frac{4s^4 + 2}{5^4 + 3s^2 + 1}$$

$$X(s) = (4c4+3c2+1) = U(s)$$

$$X(s) = (4c4+3x^2+1)$$

$$Y(s) = (4c4+2)X(s)$$

$$=4(u-3x-x)+2x$$
= $4u-12x_3-2x_1$

[4 pts] ii) For the output equation
$$y = Cx + Du = C\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + b(u(t), \text{ find } C.$$

$$C = \frac{2}{2} \cdot \frac{12}{0} \cdot \frac{0}{12}$$

[5 pts] b) A nonlinear system with output x(t) and input f(t) is described by the differential equation

$$\ddot{x} + \dot{x} + kx^2 = f(t)$$

The system input is a constant offset with small variations such that $f(t) = 1 + \delta f(t)$. The output $x(t) \approx x_o + \delta x(t)$ Find the transfer function relating output variation $\delta x(t)$ to input variation $\delta f(t)$.

$$\frac{\Delta X(s)}{\Delta F(s)} = \frac{1}{S^2 + S + 2KX}$$

$$\frac{d^{2}x}{dt^{2}} = \frac{d}{dt^{2}}(x_{0} + S_{1}) = S_{1}x$$

$$\frac{dx}{dt} = \frac{d}{dt^{2}}(x_{0} + S_{1}) = S_{1}x$$

$$\frac{dx}{dt} = \frac{d}{dt}(x_{0} + S_{1}) = S_{2}x$$

$$\frac{dx}{dt} = \frac{d}{dt^{2}}(x_{0} + S_{1}) = S_{2}x$$

$$\frac{dx}{dt} = \frac{d}{dt^{2}}(x_{0} + S_{1}) = S_{2}x$$

$$\frac{dx}{dt} = \frac{d}{dt^{2}}(x_{0} + S_{1}) = S_{2}x$$

$$\frac{dx}{dt} = \frac{d}{dt}(x_{0} + S_{2}x_{0}) + \frac{d}{dt}(x_{0} + S_{2}x_{0}) = \frac{d}{dt}(x_{0} + S_{2}x_{0}) + \frac{d}{dt}(x_{0} + S_{2}x_{0}) = \frac{d}{dt}(x_{0} + S_{2}x_{0}) + \frac{d}{dt}(x_{0} + S_{2}x_{0}) + \frac{d}{dt}(x_{0} + S_{2}x_{0}) = \frac{d}{dt}(x_{0} + S_{2}x_{0}) + \frac{d}{dt}(x_{0} + S_{2}x_{0}) + \frac{d}{dt}(x_{0} + S_{2}x_{0}) = \frac{d}{dt}(x_{0} + S_{2}x_{0}) + \frac{d}{dt}$$

c) Consider a system with a step input which has output transfer function:

$$Y(s) = \frac{2(s-2)}{s(s+1)(s+4)} = \frac{A}{s} + \frac{B}{s+1} + \frac{C}{s+4}$$

[3 pts] i) Find the partial fraction expansion coefficients for Y(s):

$$A = \frac{-1}{B} = \frac{2}{4}$$

$$C = \frac{-1}{4}$$

$$B = \frac{2}{4} = -1$$

$$B = \frac{2 \cdot (-3)}{(-1)(3)} = 2$$

$$C = \frac{2(-6)}{(-4)(-3)} = -1$$

[2 pts] ii) Find y(t), the inverse Laplace transform of Y(s), using the partial fraction expansion above.

$$y(t) = \frac{1}{(-1 + 2e^{-t} - e^{-4t})} a(t).$$

[8 pts] d) Draw the equivalent mechanical circuit for this electrical system, with voltage corresponding to force and current to velocity. Input force is r(t), output force is y(t).

Problem 2 Steady State Error (22 pts)

For parts a) and b), use:

$$G_1(s) = k$$

$$G_2(s) = \frac{s+2}{(s+3)(s+4)}$$

$$H(s) = \frac{1}{s}$$

[4 pts] a) Let R(s) = 0. Find the response to a general disturbance input D(s) in terms of $G_1(s), G_2(s), H(s)$.

$$\frac{C(s)}{D(s)} = \frac{G^2}{1 + G_1 G_2 H}$$

$$\frac{2' \text{ [4 pts] b) For a disturbance input } d(t) = u(t), \text{ a unit step, (with } r(t) = 0) \text{ show that } \lim_{t \to \infty} c(t) = 0.}{(S+2)}$$

$$\frac{(S+2)}{(S+3)(S+4) + k(S+2)} \int \lim_{S \to \infty} S(S) \cdot \int \frac{1}{S} = \lim_{S \to \infty} \frac{S(S+2)}{S(S+3)(S+4) + k(S+2)}$$

$$\lim_{S \to 0} s(s) \cdot f = \lim_{S \to 0} \frac{s(s)}{s(s+3)}$$

 $[4 \text{ pts}] \text{ c) Let } D(s) = 0. \text{ Let } e(t) = r(t) - c(t). \text{ Find } \frac{E(s)}{R(s)} \text{ in terms of } G_1(s), G_2(s), H(s).$ $\frac{E(s)}{R(s)} = \frac{1 - G_1G_2 + G_2G_2 + G_2G_3}{1 - G_2G_2 + G_2G_3} = \frac{1 - G_2G_2 + G_2G_3}{1 - G_2G_3} = \frac{1 - G_2G_2 + G_2G_3}{1 - G_2G_3} = \frac{1 - G_2G_2 + G_2G_3}{1 - G_2G_3} = \frac{1 - G_2G_3}{1 - G_2G_3}$

$$\frac{E(s)}{R(s)} = \frac{1 - 6_1 6_2 + 6_2 6_2 H}{1 + 6_3 6_2 H}$$

$$= R(1 - 4R)$$

[4 pts] d) For r(t) = u(t), a unit step, (with d(t) = 0), show that $\lim_{t \to \infty} e(t) \neq 0$.

4 pts] d) For
$$r(t) = u(t)$$
, a unit step, (with $a(t) = 0$), show that $\lim_{t \to \infty} e(t) \neq 0$.

$$|x| = \lim_{t \to \infty} \frac{k(s+2)}{(s+3)(s+4)^s} - \frac{k(s+2)}{(s+3)(s+4)^s}$$

$$|x| = \lim_{t \to \infty} \frac{k(s+2)}{(s+3)(s+4)^s} - \frac{k(s+2)}{(s+3)(s+4)^s}$$

$$l_{im} = (s+3)(s+4)s + k(s+2) - k(s+2)s$$

 $s \to 0$ (s+3)(s+4)s + k(s+2)

$$= \frac{2K}{2K} = 1 = \lim_{k \to \infty} e(f)$$

Problem 3. Root Locus Plotting (27 pts)

For the root locus (1 + kG(s) = 0) with k > 0, and given open loop transfer function G(s):

$$G(s) = \frac{s(s+1)}{(s^2 - 2s + 5)(s^2 + 6s + 13)}$$

- [1 pts] a) Determine the number of branches of the root locus =
- [3 pts] c) Determine the angles for each asymptote: 11/2, -11/2

$$\frac{(2141)\pi}{(4-2)} = \frac{\pi}{2}, -\pi/2$$

[4 pts] d) determine the real axis intercept for the asymptotes $\sigma =$

$$\frac{2}{\text{poles}} - \frac{2}{2} = \frac{1+1-3-3-0-(+)}{2} = \frac{-3}{2}$$

[6 pts] e) Use the angle criteria for poles and zeros to show that $p \approx 0 + 2.1j$ is on the root locus. zeros: $\angle p = \sqrt{1/2} = 40^\circ$ $\angle (p+1) = 463^\circ$

$$\angle (p-1+2j) = 1$$

$$\angle (p-1-2j) = 1$$

poles:

$$\angle (p-1+2j) = -10$$

$$\angle (p+3+2j) = -10$$

$$\angle (p+3+2j) = -10$$

$$\angle (p+3-2j) = -10$$

[6 pts] f) Estimate the value of k for which $p \approx +2.1j$ is a closed-loop pole. (Show work for full credit).

k = 3.5

 $= \frac{3. \sqrt{5. \sqrt{17}}}{2} \approx \frac{3. \sqrt{81}}{2} \approx \frac{3. \sqrt{81}}{2}$

[5 pts] g) Sketch the root locus below using the information found above. Draw arrows on branches showing

increasing gain. Draw asymptotes. -3

or

Key,

Problem 4. Root Locus Compensation (18 pts)

Given open loop transfer function G(s), where $G_1(s)$ is the open-loop plant:

$$G(s) = G_c(s)G_1(s) = G_c(s)\frac{64}{(s^2 + 4s + 8)^2}$$

and $G_c(s)$ is a PI compensation of the form $G_c(s) = k_p \frac{s+z_c}{s}$. The closed loop system, using unity gain feedback and the PI controller, should have a pair of poles at $p \approx -1 + j$ and $p^* \approx -1 - j$.

[7 pts] a. To obtain the closed loop pole at p, estimate the angle contribution (in degrees) for each of the open loop poles, and the total angle contribution for all open-loop poles:

pole	angle	pole	angle
s = 0	-32		
s = -2 + 2j	445	s = -2 + 2j	+42
s = -2-2j	-71,6	s = -2-2j	-71.6
TOTAL	-1880	0	

[2 pts] b. What is the necessary angle contribution of the zero z_c for the closed loop pole p to be on the root locus? $\frac{8^{3}}{180} \approx 3 \cdot \frac{4}{90} \approx 1 \cdot \frac{4}{3} \approx 0.13$

[9 pts] c. Find z_c to within ± 0.5 such that p is approximately on the root locus, within ± 2 degrees. (Show work.) $z_c = \frac{1}{1000} + \frac{$

 $z_c = \frac{1}{100} = \frac{1}{100}$

ton 18 = 11,30

(Pole-Zero plot below for scratch work. It will not be graded).

KEY

Problem 5. Routh-Hurwitz (14 pts)

Given system with closed loop transfer function (assuming unity feedback)

$$T(s) = \frac{k}{s^4 + 10s^3 + 33s^2 + 40s + 16 + k}$$

[10 pts] a. Using the Routh-Hurwitz table, show that the maximum positive k for which the closed loop system is stable is approximately 100.

5000	to to approximately 100.	1		
54	1	33	16+K	0
23	10	40	8	0
52	33-10-40	16+K	0	
	= 29			
5'	29.40-10(16tk)	O	0	
	= 40 - 10 (16+K)		7 40 > 6 (16HK)	
50			4.29 > 16+K	
	1.		116 > 16+K	
4	70 for k7-16 10-10(16+k) >0, -		(100 >K)	
	39 (16th) 10)			

[4 pts] b. For $k \approx 100$, approximately find the pair of closed loop poles on the imaginary axis. (Show work). $s = \pm j\omega_o = \pm j$

$$52 \pm 21$$
 $52 + 4=0$
 $52 + 4=0$
 52 ± 21