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Problem 1 (25 pts)
Each part is independent.

[7 pts] a) Consider a single-input single-output system with input u(t) and output y(t) described by the block
diagram below with coefficients as given. (Note that this diagram is a modified version of the Lec#3 handout.)
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[3 pts] i) Write the transfer function for the system: - e
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4 pts] ii) For the output equation y = Cx + Du = C + ﬁu(t), find C.
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[5 pts] b) A nonlinear system with output z(t) and input f(t) is described by the differential equation

i+ &+ kz? = f(t)

Find the transfer function relatmg output varxatlon 6:5( ) to 1nput variation 5f( )
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c) Consider a system with a step input which has output transfer function:
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[3 pts] i) Find the partial fraction expansion coefficients for Y'(s):
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[2 pts] ii) Find y(t), the inverse Laplace transform of Y'(s), using the partial fraction expansion above.
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[8 pts] d) Draw the equivalent mechanical circuit for this electrical system, with voltage corresponding to force

and current to velocity. Input force is r(t), output force is y(t).
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Problem 2 Steady State Error (22 pts)

D(s)
For parts a) and b), use:
R(: x C(:
LA o [ G0 T s = k
Ga(s) = GrHemm
HGs) | (s+3)(s+4)

H(s)zi

( [4 pts] a) Let R(s) = 0. Find the response to a general disturbance input D(s) in terms of G1(s),Ga(s), H(s) .
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2/ [4 pts] b) For a dist&rgbanc}e input d(t) = u(t), a unit step, (with r(t) = O)(;how iliat lim;_, o0 ¢(t) = 0. 3(51 )
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l [4 pts] c) Let D(si 0. Let e(t) = r(t) — ¢(t). Find %&% in terms of G1(s), Ga(s), H(s) .
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[4 pts] d) For r(t) = u(t), ahl_lrit_it_ep, (with d(t) = 0), show that lim;_, e(t) # 0.
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Problem 3. Root Locus Plotting (27 pts)
For the root locus (1 + kG(s) = 0) with k& > 0, and given open loop transfer function G(s):
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[1 pts] a) Determine the number of branches of the root locus = ﬂ

(2 pts] b) Determine the locus of poles on the real axis " <o <O ’{2 f}bn. T
=0,
[3 pts] ¢) Determine the angles for each asymptote: W/ 2—/. ‘T]7‘L (_q.'2'> T ) / '

[4 pts] d) determine the real axis intercept for the asymptotes o =
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[6 pts] e) Use, the angle criteria for poles and zeros to show that p a2 0 + 2.1j is on the root locus.
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[6 pts] f) Estimate the value of k for which p &~ +2.1j is a closed-loop pole. (Show work for full credit).

e= 3.8 ko=t ke t. 13Jh-fs =
TR TR oA %\#/55
’i IR
r-gr ’27 jﬂmq

[5 pts] g) Sketch the root(Tocus below using the information found at‘;ov'RDraw arrows on branches shqlm g
increasing gain. Draw asymptostes. )
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Problem 4. Root Locus Compensation (18 pts)
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Given open loop transfer function G(s), where G1(s) is the open-loop plant:

64

G(s) = Ge()G1(5) = Gl Gz gz 78

and G,(s) is a PI compensation of the form G.(s) = ky*tze. The closed loop system, using unity gain feedback and
the PI controller, should have a pair of poles at p~ —1+ j and p* = —1 — j.

[7 pts] a. To obtain the closed loop pole at p, estimate the angle contribution (in degrees) for each of the open
loop poles, and the total angle contribution for all open-loop poles:
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[2 pts] b. What is the necessary angle contribution of the zero z. for the closed loop pole p to be on the root
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[9 pts] c. FinT zi fo within £0.5 such that p is approxi(snately on the root locus, within 4 2 degrees. (Show work.)
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(Pole-Zero plot below for scratch work. It will not be graded).
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Problem 5. Routh-Hurwitz (14 pts)

Given system with closed loop transfer function (assuming unity feedback)

k
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(10 pts] a. Using the Routh-Hurwitz table, show that the maximum positive & for which the closed loop system
is stable is approximately 100.
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[4 pts] b. For k ~ 100, approximately find the pair of closed loop poles on the imaginary axis. (
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