Final
Thu. May 14, 2015
$1510-1800 \mathrm{pm}$
Name: \qquad
SID: \qquad

- Closed book. One page, 2 sides of formula sheets. No calculators.
- There are 8 problems worth 100 points total.

Problem	Points	Score
1	14	
2	14	
3	16	
4	8	
5	13	
6	13	
7	14	
8	8	
Total	100	

In the real world, unethical actions by engineers can cost money, careers, and lives. The penalty for unethical actions on this exam will be a grade of ' F ' and a letter will be written for your file and to the Office of Student Conduct.

$\tan ^{-1} \frac{1}{2}=26.6^{\circ}$	$\tan ^{-1} 1=45^{\circ}$
$\tan ^{-1} \frac{1}{3}=18.4^{\circ}$	$\tan ^{-1} \frac{1}{4}=14^{\circ}$
$\tan ^{-1} \sqrt{3}=60^{\circ}$	$\tan ^{-1} \frac{1}{\sqrt{3}}=30^{\circ}$
$\sin 30^{\circ}=\frac{1}{2}$	$\cos 60^{\circ}=\frac{\sqrt{3}}{2}$

$20 \log _{10} 1=0 d B$	$20 \log _{10} 2=6 d B$
$20 \log _{10} \sqrt{2}=3 d B$	$20 \log _{10} \frac{1}{2}=-6 d B$
$20 \log _{10} 5=20 d b-6 d B=14 d B$	$20 \log _{10} \sqrt{10}=10 \mathrm{~dB}$
$1 / e \approx 0.37$	$1 / e^{2} \approx 0.14$
$1 / e^{3} \approx 0.05$	$\sqrt{10} \approx 3.16$

Problem 1 (14 pts)

You are given the open-loop plant:

$$
G(s)=\frac{s+5}{(s+2)(s+10)^{3}}
$$

For the above system, the partial root locus is shown for 5 different controller/plant combinations, $G(s), D_{2}(s) G(s), \ldots, D_{5}(s) G(s)$. (Note: the root locus shows open-loop pole locations for $D(s) G(s)$, and closed-loop poles for $\frac{D G}{1+D G}$ are at end points of branches).

[5 pts] a) For each set of open-loop poles and zeros given above, choose the best corresponding open-loop Bode plot $\mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}$, or Z from the next page:
(i) $G(s)$: Bode Plot \qquad
(ii) $D_{2}(s) G(s)$: Bode plot \qquad
(iii) $D_{3}(s) G(s)$: Bode plot \qquad
(iv) $D_{4}(s) G(s)$: Bode Plot \qquad
(v) $D_{5}(s) G(s)$: Bode Plot \qquad

Problem 1, cont.
The open-loop Bode plots for 5 different controller/plant combinations, $D_{1}(s) G(s), \ldots, D_{5}(s) G(s)$ are shown below.

[4 pts] b) For the listed Bode plots, estimate the phase and gain margin:
(i) Bode plot V: phase margin ____ (degrees) at $\omega=$ \qquad
Bode plot V: gain margin \qquad dB at $\omega=$ \qquad
(ii) Bode plot Z: phase margin \qquad (degrees) at $\omega=$ \qquad Bode plot Z: gain margin \qquad dB at $\omega=$ \qquad

Problem 1, cont.

[5 pts] c) For each closed loop controller/plant with root locus as given in part a), choose the best corresponding closed-loop step response (A-E)
(i) $G(s)$: step response \qquad
(ii) $D_{2}(s) G(s)$: step response \qquad
(iii) $D_{3}(s) G(s)$: step response \qquad
(iv) $D_{4}(s) G(s)$: step response \qquad
(v) $D_{5}(s) G(s)$: step response \qquad

Step A

Step E

Step B

Problem 2 (14 pts)

[4 pts] a. You are given the open loop plant: $G(s)=k \frac{s+6}{s-6}$, with $D(s)=1$.
Sketch Nyquist plot for $G(s)$ with $k=1$, showing clearly any encirclements.

[2 pts] b. Find the bounds on k for the system with unity feedback to be stable.
[4 pts] c. You are given the open loop plant $G(s)=k \frac{(s-6)(s-4)}{(s+6)(s-1)}$.
Sketch Nyquist plot for $G(s)$ with $k=1$, showing clearly any encirclements. Hint: phase of $G(j \omega=2)$ is $+180^{\circ}$.

[4 pts] d. Find the bounds on k for the system with unity feedback to be stable.

Problem 3 (16 pts)

The open-loop system is given by $G(s)=\frac{10^{4}}{(s+10)^{3}}$, and Bode plot for $G(s)$ is here (Fig. 3.1):

A lag controller $D(s)=k \frac{s+\alpha}{s+\beta}$ is to be designed such that the unity gain feedback system with openloop transfer function $D(s) G(s)$ has the same steady state error as with OLTF $G(s)$ and has a nominal (asymptotic approximation) phase margin $\phi_{m}=55^{\circ}$ at $\omega=8 \mathrm{rad} s^{-1}$. Note $20 \log |G(j \omega=j 8)|=13 \mathrm{~dB}$.
[6 pts] a. Determine gain, zero, and pole location for the lag network $D(s)$:

$$
\text { gain } k=_\quad \text { zero } \alpha=-\quad \text { pole } \beta=-
$$

[4 pts] b. Sketch the asymptotic Bode plot for the lag network $D(s)$ alone on the plot below (Fig. 3.2):

[4 pts] c. Sketch the asymptotic Bode plot for the combined lag network and plant $D(s) G(s)$ on the plot (3.1) above.
[2 pts] d. Mark the phase and phase margin frequency on the plot of $D(s) G(s)$ (Fig. 3.1). Explain briefly (1 sentence) how does the actual phase margin compare to the asymptotic predction?

Problem 4 (8 pts)

You are given the following plant

$$
\dot{\mathbf{x}}=A \mathbf{x}+B u, \quad y=C \mathbf{x}
$$

where A is $N \times N, u$ is scalar, B is $N \times 1, C$ is $1 \times N$, and \mathbf{x} is $N \times 1$. The system is observable and controllable.
[2 pts] a. Consider a controller $u=r-K \mathbf{x}$ where r is a reference input, and K is $1 \times N$.
Determine the transfer function $\frac{Y(s)}{R(s)}=$ \qquad
[2 pts] b. Consider a controller $u=K(r-\mathbf{x})$ where r is a reference input, and K is $1 \times N$. Determine the transfer function $\frac{Y(s)}{R(s)}=$ \qquad
[2 pts] c. Draw a block diagram of the controlled system using integrators, summing junctions, and scaling functions.
[3 pts] d. If the same K is used in part a. and b. above, briefly explain any difference in transfer function or behavior:

Problem 5. (13 pts)

Consider the following control system:

[3 pts] a. Write the state and output equations for the system, in terms of A, B, C, K, K_{e}.

$$
\left[\begin{array}{c}
\dot{\mathbf{x}} \tag{1}\\
\dot{x}_{N}
\end{array}\right]=[\quad]\left[\begin{array}{c}
\mathbf{x} \\
x_{N}
\end{array}\right]+\left[\quad y=\left[\begin{array}{l}
\quad
\end{array}\right],\left[\begin{array}{c}
\mathbf{x} \\
x_{N}
\end{array}\right]\right.
$$

$[6 \mathrm{pts}]$ b. Given $C=\left[\begin{array}{ll}1 & 0\end{array}\right], \quad B=\left[\begin{array}{l}0 \\ 1\end{array}\right], \quad A=\left[\begin{array}{cc}0 & 1 \\ -1 & -2\end{array}\right]$
find K and K_{e} such that the closed loop poles are at $s=-1,-2,-4$.
$K=[$
]

$$
K_{e}=
$$

\qquad
[4 pts] c. Show, with $r(t)$ a unit step input, that $e=0$ in steady state (with the K, K_{e} found above). (Hint: do not use matrix inverse.)

Problem 6. 13 pts

Given the following system model:

[3 pts] a. Write the state and output equations for the system above.
$\dot{\mathbf{x}}=A \mathbf{x}+B u=\left[\begin{array}{c}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=[\quad]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\square u(t), \quad y=C \mathbf{x}=[\quad]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right.$
[2 pts] b. Determine if the system A, B, C is controllable and observable.
[2 pts] c. Provide state equations for an observer which takes as inputs $u(t), y(t)$, and provides an estimate of the state $\hat{\mathbf{x}}(t)$.
[6 pts] d. Find observer gain L such that the observer has closed loop poles at $s_{1}=-10, s_{2}=$ -10 .

Problem 7 (14 pts)

[3 pts] a. Given $G(s)=\frac{1}{s+2}$. Let $m(t)$ be the step response of $g(t)$, i.e. $M(s)=\frac{1}{s(s+2)}$. Let $x_{1}(t)=m(t)-m(t-T)$ where T is the sampling period. Find $X_{1}(z)$ the Z transform of $x_{1}(t)$.

$$
X_{1}(z)=
$$

[3 pts] b. Given $\dot{x}_{2}(t)=-2 x_{2}(t)+u(t)$. Find the discrete time equivalent system using zeroorder hold for input $u(t)$ and sampling period $T: x_{2}((k+1) T)=G x_{2}(k T)+H u(k T)$.

$$
G=
$$

\qquad

$$
H=
$$

\qquad
[2 pts] c. Find the $\frac{X_{2}(z)}{U(z)}$ the discrete time transfer function from input u to state x_{2} using the state-space form.
$\frac{X_{2}(z)}{U(z)}$

Problem 7, cont.

[2 pts] d. Does $\frac{X_{2}(z)}{U(z)}=X_{1}(z) ?$ Why or why not?
[4 pts] e. With zero initial conditions (ZSR), $T=0.25$, and a unit step input for $x_{2}(k T)$, sketch $m(t)$ and $x_{2}(k T)$ on the plot below in the interval shown:

Problem 8 Short Answers (8 pts)

[4 pts] a. Given the discrete time system below, find $\lim _{k \rightarrow \infty} x(k)$ for a unit step input $u(k)=1$.

$$
x(k+1)=\left[\begin{array}{cc}
1 / 6 & 1 / 2 \\
2 / 3 & 0
\end{array}\right] x(k)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(k)
$$

$\lim _{k \rightarrow \infty} x(k)=[\quad]$.
[4 pts] b. Given $\dot{x}(t)=-10 x(t)+u(t)$. The discrete time equivalent system using zero-order hold for input $u(t)$ and sampling period T is of the form $x((k+1) T)=G x(k T)+H u(k T)$. The discrete time system has a state feedback controller $u(k T)=r(k T)-20 x(k T)$ applied.
i. Find the eigenvalue for the closed loop system: \qquad
ii. Find the largest value of T for which the system will be stable. (May be left in terms of ln.) : $T<$ \qquad

Blank page for scratch work.

