EECS C128/ ME C134 Final Thu. May 14, 2015 1510-1800 pm

Name:	
SID:	

- Closed book. One page, 2 sides of formula sheets. No calculators.
- There are 8 problems worth 100 points total.

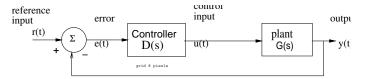
Problem	Points	Score
1	14	
2	14	
3	16	
4	8	
5	13	
6	13	
7	14	
8	8	
Total	100	

In the real world, unethical actions by engineers can cost money, careers, and lives. The penalty for unethical actions on this exam will be a grade of 'F' and a letter will be written for your file and to the Office of Student Conduct.

$\tan^{-1}\frac{1}{2} = 26.6^{\circ}$	$\tan^{-1} 1 = 45^{\circ}$
$\tan^{-1}\frac{1}{3} = 18.4^{\circ}$	$\tan^{-1}\frac{1}{4} = 14^{\circ}$
$\tan^{-1}\sqrt{3} = 60^{\circ}$	$\tan^{-1}\frac{1}{\sqrt{3}} = 30^{\circ}$
$\sin 30^\circ = \frac{1}{2}$	$\cos 60^\circ = \frac{\sqrt{3}}{2}$

$20 \log_{10} 1 = 0 dB$	$20\log_{10}2 = 6dB$
$20\log_{10}\sqrt{2} = 3dB$	$20\log_{10}\frac{1}{2} = -6dB$
$20\log_{10} 5 = 20db - 6dB = 14dB$	$20\log_{10}\sqrt{10} = 10 \text{ dB}$
$1/e \approx 0.37$	$1/e^2 \approx 0.14$
$1/e^3 \approx 0.05$	$\sqrt{10} \approx 3.16$

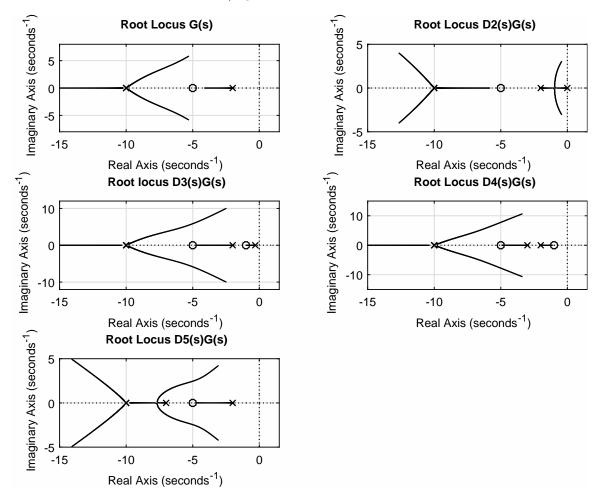
Problem 1 (14 pts)



You are given the open-loop plant:

$$G(s) = \frac{s+5}{(s+2)(s+10)^3}$$

For the above system, the partial root locus is shown for 5 different controller/plant combinations, $G(s), D_2(s)G(s), ..., D_5(s)G(s)$. (Note: the root locus shows open-loop pole locations for D(s)G(s), and closed-loop poles for $\frac{DG}{1+DG}$ are at end points of branches).

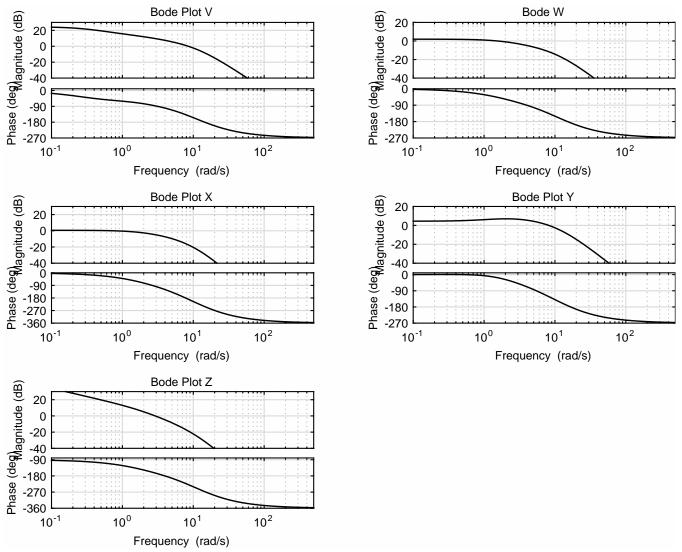


[5 pts] a) For each set of open-loop poles and zeros given above, choose the best corresponding open-loop Bode plot V,W,X,Y, or Z from the next page:

- (i) G(s): Bode Plot ____
- (ii) $D_2(s)G(s)$: Bode plot _____
- (iii) $D_3(s)G(s)$: Bode plot _____
- (iv) $D_4(s)G(s)$: Bode Plot _____
- (v) $D_5(s)G(s)$: Bode Plot _____

Problem 1, cont.

The open-loop Bode plots for 5 different controller/plant combinations, $D_1(s)G(s), ..., D_5(s)G(s)$ are shown below.



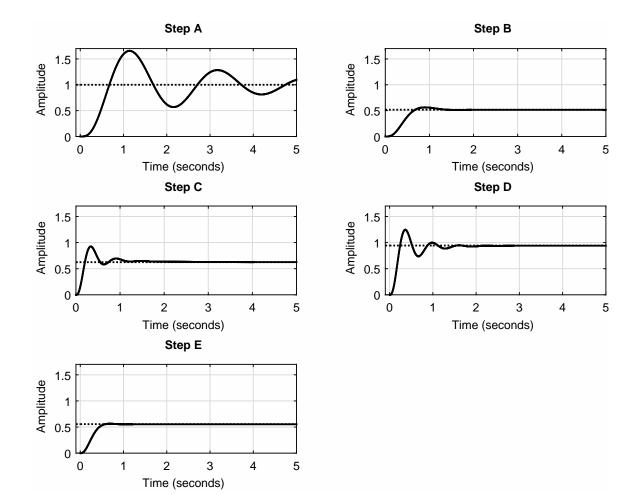
[4 pts] b) For the listed Bode plots, estimate the phase and gain margin:

- (i) Bode plot V: phase margin ____ (degrees) at $\omega = ___$ Bode plot V: gain margin ____ dB at $\omega = ___$
- (ii) Bode plot Z: phase margin ____ (degrees) at $\omega =$ ____ Bode plot Z: gain margin ____ dB at $\omega =$ ____

Problem 1, cont.

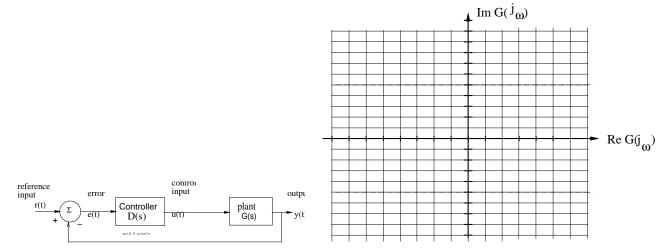
[5 pts] c) For each closed loop controller/plant with root locus as given in part a), choose the best corresponding closed-loop step response (A-E)

- (i) G(s): step response _____
- (ii) $D_2(s)G(s)$: step response _____
- (iii) $D_3(s)G(s)$: step response _____
- (iv) $D_4(s)G(s)$: step response _____
- (v) $D_5(s)G(s)$: step response ____



Problem 2 (14 pts)

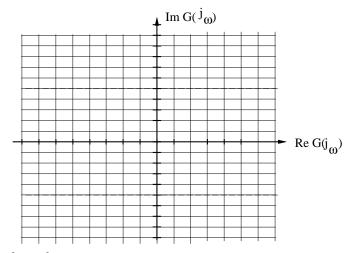
[4 pts] a. You are given the open loop plant: $G(s) = k \frac{s+6}{s-6}$, with D(s) = 1. Sketch Nyquist plot for G(s) with k = 1, showing clearly any encirclements.



[2 pts] b. Find the bounds on k for the system with unity feedback to be stable.

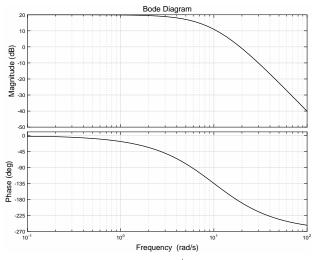
[4 pts] c. You are given the open loop plant $G(s) = k \frac{(s-6)(s-4)}{(s+6)(s-1)}$.

Sketch Nyquist plot for G(s) with k = 1, showing clearly any encirclements. Hint: phase of $G(j\omega = 2)$ is $+180^{\circ}$.



[4 pts] d. Find the bounds on k for the system with unity feedback to be stable.

Problem 3 (16 pts) The open-loop system is given by $G(s) = \frac{10^4}{(s+10)^3}$, and Bode plot for G(s) is here (Fig. 3.1):

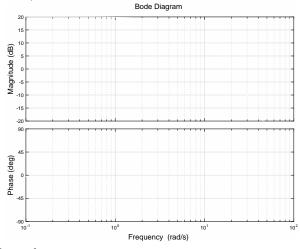


A lag controller $D(s) = k \frac{s+\alpha}{s+\beta}$ is to be designed such that the unity gain feedback system with openloop transfer function D(s)G(s) has the same steady state error as with OLTF G(s)and has a nominal (asymptotic approximation) phase margin $\phi_m = 55^\circ$ at $\omega = 8$ rad s^{-1} . Note $20 \log |G(j\omega = j8)| = 13$ dB.

[6 pts] a. Determine gain, zero, and pole location for the lag network D(s):

gain $k = _$ zero $\alpha = _$ pole $\beta = _$

[4 pts] b. Sketch the asymptotic Bode plot for the lag network D(s) alone on the plot below (Fig. 3.2):



[4 pts] c. Sketch the asymptotic Bode plot for the combined lag network and plant D(s)G(s) on the plot (3.1) above.

[2 pts] d. Mark the phase and phase margin frequency on the plot of D(s)G(s) (Fig. 3.1). Explain briefly (1 sentence) how does the actual phase margin compare to the asymptotic prediction?

Problem 4 (8 pts)

You are given the following plant

$$\dot{\mathbf{x}} = A\mathbf{x} + Bu, \qquad y = C\mathbf{x}$$

where A is $N \times N$, u is scalar, B is $N \times 1$, C is $1 \times N$, and **x** is $N \times 1$. The system is observable and controllable.

[2 pts] a. Consider a controller $u = r - K\mathbf{x}$ where r is a reference input, and K is $1 \times N$.

Determine the transfer function $\frac{Y(s)}{R(s)} =$ _____

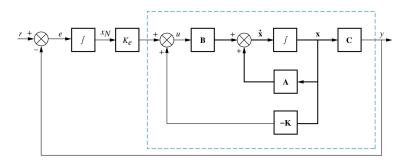
[2 pts] b. Consider a controller $u = K(r - \mathbf{x})$ where r is a reference input, and K is $1 \times N$. Determine the transfer function $\frac{Y(s)}{R(s)} =$ _____

[2 pts] c. Draw a block diagram of the controlled system using integrators, summing junctions, and scaling functions.

[3 pts] d. If the same K is used in part a. and b. above, briefly explain any difference in transfer function or behavior:

Problem 5. (13 pts)

Consider the following control system:



[3 pts] a. Write the state and output equations for the system, in terms of A, B, C, K, K_e .

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{x}_N \end{bmatrix} = \begin{bmatrix} & & \\ & &$$

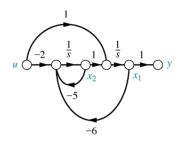
[6 pts] b. Given $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$

find K and K_e such that the closed loop poles are at s = -1, -2, -4.

$$K = [\qquad] \qquad \qquad K_e = _$$

[4 pts] c. Show, with r(t) a unit step input, that e = 0 in steady state (with the K, K_e found above). (Hint: do not use matrix inverse.)

Problem 6. 13 pts



Given the following system model:

[3 pts] a. Write the state and output equations for the system above.

$$\dot{\mathbf{x}} = A\mathbf{x} + Bu = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} & \\ & \\ & \\ \end{bmatrix} u(t), \qquad y = C\mathbf{x} = \begin{bmatrix} & & \\ & & & \\ & & \\ & & & \\$$

[2 pts] b. Determine if the system A, B, C is controllable and observable.

[2 pts] c. Provide state equations for an observer which takes as inputs u(t), y(t), and provides an estimate of the state $\hat{\mathbf{x}}(t)$.

[6 pts] d. Find observer gain L such that the observer has closed loop poles at $s_1 = -10, s_2 = -10$.

Problem 7 (14 pts)

[3 pts] a. Given $G(s) = \frac{1}{s+2}$. Let m(t) be the step response of g(t), i.e. $M(s) = \frac{1}{s(s+2)}$. Let $x_1(t) = m(t) - m(t-T)$ where T is the sampling period. Find $X_1(z)$ the Z transform of $x_1(t)$.

 $X_1(z) =$ _____

[3 pts] b. Given $\dot{x}_2(t) = -2x_2(t) + u(t)$. Find the discrete time equivalent system using zeroorder hold for input u(t) and sampling period T: $x_2((k+1)T) = Gx_2(kT) + Hu(kT)$.

$$G = _$$
 $H = _$

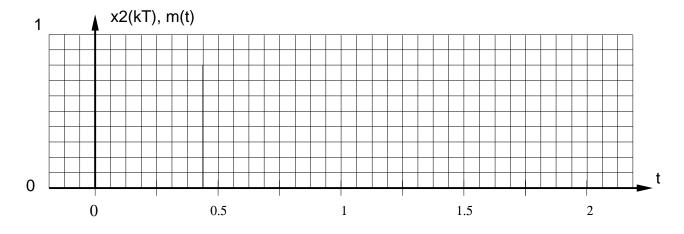
[2 pts] c. Find the $\frac{X_2(z)}{U(z)}$ the discrete time transfer function from input u to state x_2 using the state-space form.

 ${X_2(z)\over U(z)}$ ——

Problem 7, cont.

[2 pts] d. Does
$$\frac{X_2(z)}{U(z)} = X_1(z)$$
? Why or why not?

[4 pts] e. With zero initial conditions (ZSR), T = 0.25, and a unit step input for $x_2(kT)$, sketch m(t) and $x_2(kT)$ on the plot below in the interval shown:



Problem 8 Short Answers (8 pts)

[4 pts] a. Given the discrete time system below, find $\lim_{k\to\infty} x(k)$ for a unit step input u(k) = 1.

$$x(k+1) = \begin{bmatrix} 1/6 & 1/2 \\ 2/3 & 0 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

$$\lim_{k \to \infty} x(k) = \begin{bmatrix} & \\ & \end{bmatrix}.$$

[4 pts] b. Given $\dot{x}(t) = -10x(t) + u(t)$. The discrete time equivalent system using zero-order hold for input u(t) and sampling period T is of the form x((k+1)T) = Gx(kT) + Hu(kT). The discrete time system has a state feedback controller u(kT) = r(kT) - 20x(kT) applied.

i. Find the eigenvalue for the closed loop system: _____

ii. Find the largest value of T for which the system will be stable. (May be left in terms of ln.) : $T < ___$

Blank page for scratch work.