Problem Set 4: Solutions

Problem 1
a. We have:

\[C_1(s) = \frac{8(s + 2.5)}{s(s + 2)(s^2 + 3s + 10)} = \frac{8s + 20}{s(s + 2)(s^2 + 3s + 10)} = \frac{A}{s} + \frac{B}{s + 2} + \frac{Cs + D}{s^2 + 3s + 10} = \frac{A(s + 2)(s^2 + 3s + 10) + Bs(s^2 + 3s + 10) + (Cs + D)(s + 2)}{s(s + 2)(s^2 + 3s + 10)} \]

There are multiple ways to obtain the coefficients. The “official” way is to expand everything and compare coefficients of polynomials. An alternative, is to try “clever” values of \(s \) (usually the roots) to quickly obtain the coefficients solutions. Refer to Chapter 2 on the textbook for details on the partial fractions expansion.

Now comparing numerator, with \(s \to 0 \), it eliminates the \(B, C \) and \(D \) terms, and we have:

\[A \cdot (0 + 2) \cdot (0 + 10) = 8 \cdot 0 + 20 \to 20A = 20 \to A = 1 \]

Similarly, for \(s \to -2 \) we have:

\[B \cdot (-2) \cdot (2^2 + 3 \cdot (-2) + 10) = 8 \cdot (-2) + 20 \to -16B = 4 \to B = -\frac{1}{4} \]

For the last case, \(C \) and \(D \), there are no easy roots, so we will explore two techniques to obtain the coefficients.

- Similarly to the previous idea, you can just replace values that were not used. For example, for \(s = 1 \) we have (and replacing \(A \) and \(B \)):

\[A \cdot (1 + 2) \cdot (1^2 + 3 + 10) + B(1^2 + 3 + 10) + (C + D) \cdot 1 \cdot (1 + 2) = 8 + 20 \]
\[42 + \frac{-1}{4} \cdot 14 + 3C + 3D = 28 \]
\[3C + 3D = \frac{-21}{2} \]

And for \(s = -1 \) we have:

\[A \cdot (-1 + 2) \cdot (1^2 - 3 + 10) + B(-1)(1^2 - 3 + 10) + (-C + D) \cdot (-1) \cdot (-1 + 2) = -8 + 20 \]
\[8 + \frac{-1}{4} \cdot (-1) \cdot 8 + C - D = 12 \]
\[C - D = 2 \]
Solving the 2×2 system we obtain:

\[C = -\frac{3}{4}, \quad D = -\frac{11}{4} \]

- Now, the second alternative is the one described in the textbook based on matching coefficients via multiplying the lowest common denominator, $s(s + 2)(s^2 + 3s + 10)$:

\[8s + 20 = A(s + 2)(s^2 + 3s + 10) + B(s^2 + 3s + 10) + (Cs + D)s(s + 2) \]

Replacing A and B and expanding we have:

\[8s + 20 = \left(C + \frac{3}{4} \right) s^3 + \left(2C + D + \frac{17}{4} \right) s^2 + \left(2D + \frac{27}{2} \right) s + 20 \]

Balancing coefficients between the polynomials, we have three equations for two variables. From the s^3 coefficient we have:

\[C + \frac{3}{4} = 0 \rightarrow C = -\frac{3}{4} \]

From the s coefficient we have:

\[2D + \frac{27}{2} = 8 \rightarrow D = -\frac{11}{4} \]

The same results as the previous technique. We confirm that the coefficient associated with s^2 is zero:

\[2C + D + \frac{17}{4} = -2 \cdot \frac{3}{4} - \frac{11}{4} + \frac{17}{4} = 0 \]

as expected.

Finally, the partial fraction expansion is:

\[C_1(s) = \frac{1}{s} - \frac{1}{4(s + 2)} + \frac{-3s - 11}{4(s^2 + 3s + 10)} \]

Observe that the residue (or coefficient) associated with the pole at $s = -2$ (related with the $(s+2)^{-1}$ term), which is closest to the zero at -2.5, is given by $-1/4$ and is NOT negligible in comparison to the other residues. This showcases that probably the pole-cancellation is not appropriate. We will verify this claim using the step response later.

b. Repeating the process from part a. we obtain:

\[C_2(s) = \frac{1.005}{s} - \frac{0.00625}{s + 2} + \frac{-0.99875s - 3.002875}{s^2 + 3s + 10} \]

Observe now that the residue of the pole at $s = -2$, which is closest to the zero at $s = -2.01$, is 0.00625 and seems to be negligible in comparison to the other residues (at least two order of magnitude below the other residues). So, this pole-cancellation seems to be appropriate.

The code used for MATLAB is as follows (note that $H_2(s)$ does not have a final value of 1, so we normalize by multiplying by $20/20.1$ in the numerator):
Listing 1: MATLAB code that plots the step responses.

```
num1 = [8 20];
den1 = [1 5 16 20];
num1tilde = 10;
den1tilde = [1 3 10];
num2 = (20/20.1)*[10 20.1];

H1 = tf(num1, den1);
H1tilde = tf(num1tilde, den1tilde);
H2 = tf(num2, den1);

fig1 = figure();
step(H1)
hold on
step(H1tilde)
legend({'H1', 'H1tilde'})
hold off

fig2 = figure();
step(H2)
hold on
step(H1tilde)
legend({'H2', 'H1tilde'})
```

with responses:

![Step Response](image)

Figure 1: Step-response of the system represented by $H_1(s)$ and $\tilde{H}_1(s)$.
As can be seen, the pole cancellation works quite well on the $H_2(s)$ transfer function. So \tilde{H}_2 is a good approximation of $H_2(s)$. However, for $H_1(s)$, the pole cancellation is not a good approximation, since $\tilde{H}_1(s)$ incurs a larger overshoot than $H_1(s)$ in the step response.
Problem 2

a. To solve it we will use the Laplace Transform, since:

\[e^{At} = \mathcal{L}^{-1}\{(sI - A)^{-1}\} \]

Thus:

\[
(sI - A)^{-1} = \begin{bmatrix}
s + 3 & -1 \\
0 & s + 4
\end{bmatrix}^{-1}
= \begin{bmatrix}
\frac{1}{s+3} & \frac{1}{(s+3)(s+4)} \\
0 & \frac{1}{s+4}
\end{bmatrix}
= \begin{bmatrix}
\frac{1}{s+3} & \frac{1}{s+3} - \frac{1}{s+4} \\
0 & \frac{1}{s+4}
\end{bmatrix}
\]

Then we can take the inverse Laplace transform element-wise using the known LTs from the tables:

\[e^{At} = \begin{bmatrix}
e^{-3t} & e^{-3t} - e^{-4t} \\
0 & e^{-4t}
\end{bmatrix} \]

b. Using convolution, the solution for \(x(t) \) is given by:

\[
x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau
= \begin{bmatrix}
e^{-3t} & e^{-3t} - e^{-4t} \\
0 & e^{-4t}
\end{bmatrix} \begin{bmatrix}1 \\
\end{bmatrix} + \int_0^t \begin{bmatrix}e^{-3(t-\tau)} & e^{-3(t-\tau)} - e^{-4(t-\tau)} \\
0 & e^{-4(t-\tau)}
\end{bmatrix} \begin{bmatrix}0 \\
1
\end{bmatrix} d\tau
= \begin{bmatrix}3e^{-3t} - 2e^{-4t} \\
2e^{-4t}
\end{bmatrix} + \int_0^t \begin{bmatrix}e^{-3(t-\tau)} - e^{-4(t-\tau)} \\
e^{-4(t-\tau)}
\end{bmatrix} d\tau
= \begin{bmatrix}3e^{-3t} - 2e^{-4t} \\
2e^{-4t}
\end{bmatrix} + \frac{1}{12} \begin{bmatrix}1 - 4e^{-3t} + 3e^{-4t} \\
1 - e^{-4t}
\end{bmatrix}
\]

and hence:

\[y(t) = x_1(t) + x_2(t) = \frac{4 + 32e^{-3t}}{12} = \frac{1 + 8e^{-3t}}{3} \]

c. We have:

\[\dot{x}(t) = \begin{bmatrix}-8e^{-3t} + 7e^{-4t} \\
-7e^{-4t}
\end{bmatrix} \]
Then:
\[
Ax = \begin{bmatrix} -3 & 1 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} 1 + 32e^{-3t} - 21e^{-4t} \\ \frac{12}{1 + 7e^{-4t}} \end{bmatrix} = \begin{bmatrix} -8e^{-3t} + 7e^{-4t} \\ -7e^{-4t} - 1 \end{bmatrix}
\]
and since
\[
Bu = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]
we have:
\[
\dot{x}(t) = Ax + Bu = \begin{bmatrix} -8e^{-3t} + 7e^{-4t} \\ -7e^{-4t} \end{bmatrix}
\]
Problem 3
Taking the Laplace transform we have:

\[sX(s) - x(0^-) = AX(s) + BU(s) \]

Rearranging terms we have:

\[(sI - A)X(s) = x(0^-) + BU(s) \rightarrow X(s) = (sI - A)^{-1}(x(0^-) + BU(s)) \]

From problem 2 we have:

\[
(sI - A)^{-1} = \begin{bmatrix}
 s + 3 & -1 \\
 0 & s + 4
\end{bmatrix}^{-1} = \begin{bmatrix}
 \frac{1}{s+3} & \frac{1}{(s+3)(s+4)} \\
 0 & \frac{1}{s+4}
\end{bmatrix}
\]

and hence (with \(U(s) = 1/s\)):

\[
X(s) = (sI - A)^{-1}(x(0^-) + BU(s)) = \begin{bmatrix}
 \frac{1}{s+3} + \frac{2}{(s+3)(s+4)} \\
 \frac{1}{(s+3)(s+4)}
\end{bmatrix} \begin{bmatrix}
 \frac{1}{s+3} + \frac{2}{(s+3)(s+4)} \\
 \frac{1}{s+4}
\end{bmatrix}
\]

By doing partial fractions we obtain:

\[
X(s) = \begin{bmatrix}
 \frac{1}{12s} + \frac{8}{3(s+3)} - \frac{7}{4(s+4)} \\
 \frac{1}{4s} + \frac{7}{4(s+4)}
\end{bmatrix}
\]

By taking the inverse Laplace transform (for \(t \geq 0\)):

\[
x(t) = \begin{bmatrix}
 \frac{1}{12} + \frac{8}{3}e^{-3t} - \frac{7}{4}e^{-4t} \\
 \frac{1}{4} + \frac{7}{4}e^{-4t}
\end{bmatrix} = \begin{bmatrix}
 \frac{1+32e^{-3t} - 21e^{-4t}}{1+7e^{-4t}} \\
 \frac{12e^{-4t}}{1+7e^{-4t}}
\end{bmatrix}
\]

Finally:

\[
y(t) = Cx(t) = \frac{1 + 8e^{-3t}}{3}
\]
Problem 4

a. We work from inside to outside. Ignoring delays and grouping K_1 and K_2 we have:

\[
\begin{align*}
K_1 K_2 & \frac{s}{s(a_1 + 1)} \\
+ & \\
K_3 & \\
\end{align*}
\]

We denote $G_1(s) = \frac{K_1 K_2}{s(a_1 + 1)}$ and then the feedback transfer function is computed as:

\[
G'(s) = \frac{G_1(s)}{1 + K_3 G_1(s)} = \frac{\frac{K_1 K_2}{s(a_1 + 1)}}{1 + K_3 \frac{K_1 K_2}{s(a_1 + 1)}} = \frac{K_1 K_2}{s(a_1 + 1) + K_1 K_2 K_3}
\]

Then, we obtain:

\[
\begin{align*}
+ & \\
G'(s) & \\
K_4 s & \frac{s}{s(a_2 + 1)}
\end{align*}
\]

Denoting $G_2(s) = \frac{K_4 s}{s(a_2 + 1)}$, the unity feedback system can be obtained as:

\[
G(s) = \frac{G'(s)}{1 + G'(s)(G_2(s) - 1)} = \frac{\frac{K_1 K_2}{s(a_1 + 1) + K_1 K_2 K_3}}{1 + \frac{K_1 K_2}{s(a_1 + 1) + K_1 K_2 K_3} (G_2(s) - 1)} = \frac{s(a_1 + 1) + K_1 K_2 K_3 + K_1 K_2 (G_2(s) - 1)}{K_1 K_2} = \frac{s(a_1 + 1) + K_1 K_2 K_3 + K_1 K_2 \left(\frac{K_4 s}{s(a_2 + 1)} - 1 \right)}{K_1 K_2} = \frac{K_1 K_2 (s + a_2)}{s(a_1 + 1) + K_1 K_2 K_3 - K_1 K_2 (s + a_2) + K_1 K_2 K_4 s}
\]
to finally obtain:

\[R(s) \rightarrow E(s) \rightarrow G(s) \rightarrow Y(s) \]

b. It is clear that \(Y(s) = G(s)E(s) \) and \(E(s) = R(s) - Y(s) \) \(\rightarrow Y(s) = R(s) - E(s) \). Thus:

\[
R(s) - E(s) = G(s)E(s) \rightarrow R(s) = E(s)(1 + G(s)) \rightarrow \frac{E(s)}{R(s)} = \frac{1}{1 + G(s)}
\]

Thus,

\[
\frac{E(s)}{R(s)} = \frac{1}{1 + G(s)} = \frac{1}{1 + \frac{K_1K_2(s+a_2)}{s+a_1} + K_1K_2K_3 + K_1K_2K_4 + K_1K_2K_4s}
\]

\[
= \frac{s(s + a_1) + K_1K_2K_3 - K_1K_2(s + a_2) + K_1K_2K_4s}{s(s + a_1) + K_1K_2K_3 - K_1K_2(s + a_2) + K_1K_2K_4s + K_1K_2(s + a_2)}
\]

\[
= \frac{s(s + a_1) + K_1K_2K_3 - K_1K_2(s + a_2) + K_1K_2K_4s}{s(s + a_1) + K_1K_2K_3(s + a_2) + K_1K_2K_4s}
\]

\[
= \frac{s^3 + (a_1 + a_2)s^2 + (a_1a_2 - K_1K_2 + K_1K_2K_3 + K_1K_2K_4)s - a_2(K_1K_2 - K_1K_2K_3)}{s^3 + (a_1 + a_2)s^2 + (a_1a_2 + K_1K_2K_3 + K_1K_2K_4)s + a_2K_1K_2K_3}
\]
Problem 5

a. We transform the system into a unity feedback form. Based on problem 4 we have:

\[G(s) = \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)(H(s) - 1)} = \frac{1 \cdot \frac{10(s+10)}{s(s+2)}}{1 + 1 \cdot \frac{10(s+10)}{s(s+2)} \cdot (s + 4 - 1)} = \frac{10(s + 10)}{s(s + 2) + 10(s + 10)(s + 3)} = \frac{10s + 100}{11s^2 + 132s + 300} \]

Note that both poles are on the left-hand side. To compute the type we first compute the following limits:

\[K_p = \lim_{s \to 0} G(s) = \frac{100}{300} = \frac{1}{3} \]
\[K_v = \lim_{s \to 0} sG(s) = 0 \]
\[K_a = \lim_{s \to 0} s^2G(s) = 0 \]

Then, the appropriate input is a step, our system is type 0, and the appropriate static error constant is the position constant, \(K_p \), associated with the step input.

b. Since the system is type 0, then a step is an input that will yield a constant error.

c. The error is simply computed as:

\[e_{\text{step}}(\infty) = \frac{1}{1 + K_p} = \frac{1}{1 + 1/3} = \frac{3}{4} \]