UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

EE 130/230A Fall 2013 Prof. Liu

Homework Assignment #14

Due at the beginning of class on Thursday, 12/5/13

Problem 1: BJT Current Components and Output Characteristics

Consider a Si NPN BJT with emitter area $A = 10^{-7}$ cm², maintained at room temperature (T = 300K), with parameters for each of the regions as shown in the table below:

Parameter	Emitter	Base	Collector
Dopant concentration (cm ⁻³)	10^{18} (n-type)	10 ¹⁷ (p-type)	10^{15} (n-type)
Width (µm)	0.5	0.5	2.0
Minority-carrier lifetime (s)	10-7	10-6	10-6

Note that the emitter region and collector region are each short, so that

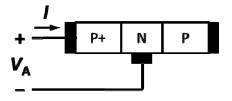
$$I_{Ep} = qA \frac{D_E}{L_E} p_{E0} \frac{\cosh(W_E'/L_E)}{\sinh(W_E'/L_E)} \left(e^{qV_{BE}/kT} - 1 \right) \text{ and } I_{Cp} = -qA \frac{D_C}{L_C} p_{C0} \frac{\cosh(W_C'/L_C)}{\sinh(W_C'/L_C)} \left(e^{qV_{BC}/kT} - 1 \right)$$

Note that the base region is short, so that

$$I_{En} = qA \frac{D_B}{L_B} n_{B0} \left[\frac{\cosh(W/L_B)}{\sinh(W/L_B)} \left(e^{qV_{BE}/kT} - 1 \right) - \frac{1}{\sinh(W/L_B)} \left(e^{qV_{BC}/kT} - 1 \right) \right] \text{ and}$$

$$I_{Cn} = qA \frac{D_B}{L_B} n_{B0} \left[\frac{1}{\sinh(W/L_B)} \left(e^{qV_{BE}/kT} - 1 \right) - \frac{\cosh(W/L_B)}{\sinh(W/L_B)} \left(e^{qV_{BC}/kT} - 1 \right) \right]$$

Suppose that the BJT is biased at the edge of saturation: the emitter junction is forward biased such that $exp(qV_{BE}/kT) = 10^{10}$, and the base-collector junction is zero biased (*i.e.* $V_{BC} = 0$ V). Ignore band-gap narrowing in the emitter.


(a) Calculate γ , $\alpha_{\rm T}$ and $\beta_{\rm dc}$

(Note that you'll first need to calculate the quasi-neutral emitter width $W_{\rm E}$, quasi-neutral base width W, and quasi-neutral collector width $W_{\rm C}$, then calculate $I_{\rm Ep}$, $I_{\rm En}$, $I_{\rm Cp}$, and $I_{\rm Cn}$)

- (b) Sketch the output characteristic ($I_{\rm C} vs. V_{\rm CE}$) for $0 < V_{\rm CE} < 3$ V and label it with the value of $I_{\rm B}$. Is the effect of base width modulation significant? Explain why or why not.
- (c) How would your answers to parts (a) and (b) change if V_{BE} were to be increased to double the value of I_B ?

Problem 2: Ebers-Moll Model

When one of the BJT terminals is left floating (unconnected), the BJT behaves like a diode. Consider a PNP BJT configured as shown:

Derive the *I vs.* V_A relationship for this "diode" using the Ebers-Moll equations. (*I* should be expressed only in terms of V_A and the Ebers-Moll parameters.)