UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

EE 130/230A Fall 2013 Prof. Liu

Homework Assignment #15

Due at the beginning of class on Thursday, 12/12/13 (Note: This assignment is optional, *i.e.* for extra credit.)

<u>Problem 1</u>: BJT – Deviations from the Ideal

Consider the Si NPN BJT in Problem 1 of HW#14, with the emitter junction forward biased such that $exp(qV_{BE}/kT) = 10^{10}$.

Emitter area $A = 10^{-7}$ cm², operating at room temperature (T = 300K)

Parameter	Emitter	Base	Collector
Dopant concentration (cm ⁻³)	10^{18} (n-type)	10 ¹⁷ (p-type)	10^{15} (n-type)
Width (µm)	0.5	0.5	2.0
Minority-carrier lifetime (s)	10-7	10-6	10-6

(a) What is the value of the Early voltage, V_A ?

<u>Note</u>: You should use the value of $C_{\rm JC}$ (units F/cm²) for $V_{\rm BC} = 0$ V.

- (b) What is the punchthrough voltage $(V_{CE} = V_{CB} + V_{BE}$ for which the quasi-neutral base width W = 0?
- (c) Estimate the breakdown voltage V_{CEO} using the formula

$$V_{CEO} = \frac{V_{CBO}}{\sqrt{\beta_{dc} + 1}}$$

where V_{CBO} is the reverse breakdown voltage of the base-collector pn junction. Assume that the critical electric field for avalanche breakdown of the base-collector junction is $5 \times 10^5 \text{ V/cm}$.

(d) Based of your answers in parts (b) and (c), will punchthrough be observed in the common-emitter output characteristics ($I_C vs. V_{CE}$ plot) before breakdown?

Problem 2: Gummel Plot

Generate a standard Gummel plot (log(I_C) and log(I_B) vs. V_{BE}) showing non-ideal effects at very low current and very high current. Indicate qualitatively how this plot would change for the cases below. (Assume the common emitter d.c. current gain β_{dc} is 100 for moderate current, recombination in the base is negligible, and that current due to holes collected into the base from the collector are negligible.)

- **a**) base doping increases by $10 \times$
- **b**) emitter doping increases by $10 \times$
- c) base width decreases by 50%
- d) temperature increases by 50°C

(CONTINUED ON NEXT PAGE)

Problem 3: BJT small-signal model

Suppose an incremental emitter current i_e is suddenly applied at t = 0 to a BJT operated in active mode with quiescent (DC) current I_{E0} and base-emitter bias voltage V_{BE} , so that $I_E = I_{E0} + i_e$. Using the simplified hybrid-pi small-signal circuit model shown below, show that the resultant small-signal base-emitter voltage v_{be} responds with the characteristic time constant

$$\tau_{E} \approx \tau_{F} + \frac{kT}{q} \frac{C_{J,BE}}{I_{C}}$$

This is one of the delays that affects the unity-gain frequency (f_T) of a BJT.

<u>Hint</u>: Apply Kirchoff's current law (to the emitter node) to obtain a differential equation for v_{be} , and find the solution for $v_{be}(t)$ by applying appropriate boundary conditions for t = 0 and $t \rightarrow \infty$. (You may assume that $v_{be}(t=0) = 0$.)

Problem 4: Base transit time and BJT transient response

Consider the Si NPN BJT of Problem 1, operating at the edge of saturation ($V_{BC} = 0V$), at a collector current I_C of 0.1 mA.

- (a) Calculate the base transit time (τ_t) .
- (b) Calculate the excess minority-carrier charge stored in the base (Q_B) . How will Q_B change as the BJT is biased into the active region (*i.e.* as V_{BC} is increased), with V_{BE} held constant?
- (c) Suppose the BJT is operating in the active mode and the base current is suddenly doubled at time t = 0. Derive an expression for collector current $I_{\rm C}(t)$ for t > 0.
- (d) Does a BJT switch off more quickly if it is biased in the active mode *vs*. the saturation mode? Explain briefly.