UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

EE 130 / EE 230A Spring 2013

Prof. Liu

Homework Assignment #2

Due at the beginning of class on Thursday, 9/12/13

Problem 1: Semiconductor doping

- Explain why boron (B) is preferred over indium (In) as the dopant species to achieve highly conductive p-type silicon.
- b) At very high temperatures (e.g. $>1000^{\circ}$ C), the conductivity of silicon is not significantly affected by moderate doping (N_A or N_D less than 10¹⁸/cm³), *i.e.* it is an intrinsic semiconductor. Explain why this is the case.

Problem 2: Electron and hole concentrations

Calculate the electron density (*n*) and hole density (*p*) in the following samples:

- a) Silicon doped with 10^{15} cm⁻³ boron atoms and 10^{17} cm⁻³ arsenic atoms, at room temperature. b) Silicon doped with 10^{15} cm⁻³ boron atoms and 10^{17} cm⁻³ arsenic atoms, at room temperature. c) Silicon doped with 10^{15} cm⁻³ boron atoms and 10^{17} cm⁻³ arsenic atoms, at T = 1000 K.

Problem 3: Carrier distributions

The "density of states" describes the energy distribution of states (number of states per unit volume per unit energy) within a band. For energies close to the band edges E_c and E_y , the density of states at an energy E in the conduction band and valence band of Si are given by $g_{c}(E)$ and $g_{v}(E)$, respectively:

$$g_{c}(E) = \frac{m_{n}^{*}\sqrt{2m_{n}^{*}(E - E_{c})}}{\pi^{2}\hbar^{3}} \qquad \text{for } E \ge E_{c}$$

$$g_{v}(E) = \frac{m_{p}^{*}\sqrt{2m_{p}^{*}(E_{v} - E)}}{\pi^{2}\hbar^{3}} \qquad \text{for } E \le E_{v}$$

where m_n^* and m_p^* are the density of states effective mass for electrons and holes, respectively. $(m_{\rm p}^*=1.08m_{\rm o} \text{ and } m_{\rm p}^*=0.81m_{\rm o} \text{ for Si at 300K.})$ In thermal equilibrium, the probability that a state at energy *E* is occupied is given by the Fermi function:

$$f(E) = \frac{1}{1 + e^{(E - E_F)/kT}}$$

where $E_{\rm F}$ is the Fermi level. Thus, the distribution of electrons within the conduction band is given by $n(E)=f(E)\times g_{c}(E)$, and the distribution of holes within the valence band is given by $p(E)=[1-f(E)]\times g_{v}(E)$. Consider a Si sample in thermal equilibrium at T = 300K, with $E_{\rm F}$ located 3kT below $E_{\rm c}$:

a) Compute and plot n(E). At what energy (relative to E_c) does n(E) exhibit a peak?

b) Show qualitatively (with a simple sketch) how n(E) changes with increasing temperature. You may assume that $g_c(E)$ does not change with temperature.

Problem 4: Energy band diagram

Consider a Si sample maintained under equilibrium conditions, doped with Phosphorus to a concentration 10^{16} cm^{-3} :

- a) For T = 300K, draw the energy band diagram for this sample, indicating the values of $(E_c E_F)$ and $(E_{\rm F} - E_{\rm i})$ to within 0.01 eV.
- b) For T = 600K, draw the energy band diagram for this sample, indicating the values of $(E_c E_F)$ and $(E_{\rm F} - E_{\rm i})$ to within 0.01 eV. Remember that $N_{\rm c}$ and $N_{\rm v}$ are temperature dependent. Also, $E_{\rm G}$ is dependent on temperature: for silicon, $E_{\rm G} = 1.205 - 2.8 \times 10^{-4} (T)$ for $T > 300 {\rm K}$. Provide a qualitative explanation for the relative shift in Fermi level.