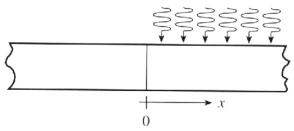
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences


EE 130 / EE 230A Fall 2013 Prof. Liu

Homework Assignment #4

Due at the beginning of class on Thursday 9/26/13

Problem 1: Continuity Equation and Quasi-Fermi Levels

Consider a bar of p-type silicon that is uniformly doped ($N_A = 10^{17}/\text{cm}^3$) with minority carrier lifetime $\tau_n = 10^{-7}$ sec, maintained at T = 300K. As shown in the figure below, the bar is partially illuminated with light, which generates 10^{16} electron-hole pairs/cm³-sec uniformly throughout the x > 0 region of the bar. The electron-hole generation rate (G_L) is zero for x < 0. Steady state conditions prevail.

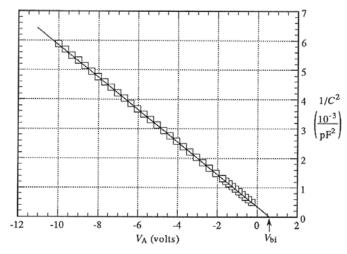
- (a) What are the electron and hole concentrations at $x = -\infty$? Draw the corresponding energy band diagram.
- (b) What are the electron and hole concentrations at $x = +\infty$? Draw the corresponding energy band diagram. Do low-level injection conditions prevail?
- (c) Derive separate expressions for the excess electron concentration $\Delta n(x)$ for x > 0 and x < 0. Note that $\Delta n(x)$ and its derivative $d\Delta n(x)/dx$ must be continuous at x = 0.

Problem 2: MS contact – p-type Si

Consider an ideal contact between Al ($\Phi_{\rm M} = 4.1 \text{eV}$) and p-type silicon with $N_{\rm A} = 10^{17} \text{ cm}^{-3}$, maintained at T = 300K.

- (a) Draw the equilibrium ($V_{\rm A} = 0$ V) energy-band diagram, indicating numerical values for the Schottky barrier height $\Phi_{\rm Bp}$, depletion-layer width W, $E_{\rm F} E_{\rm v}$ in the neutral region, and built-in potential $V_{\rm bi}$.
- (**b**) Draw the energy-band diagram for an applied bias $V_{\rm A}$ = -0.5 V.

(c) Qualitatively sketch the equilibrium ($V_A = 0$ V) charge density distribution $\rho(x)$, the electric field distribution $\mathcal{E}(x)$, and potential distribution V(x) for this contact. Show how these distributions change with an applied bias $V_A = -0.5$ V.


Problem 3: MS contact – n-type Si

Consider a contact between NiSi and n-type silicon with $N_D = 10^{17}$ cm⁻³, maintained at T = 300K.

- (a) Draw the equilibrium ($V_A = 0$ V) energy-band diagram, indicating numerical values for the Schottky barrier height Φ_{Bn} , depletion-layer width W, $E_c E_F$ in the neutral region, and built-in potential V_{bi} . (Note: Use the Schottky barrier value given in Lecture #7.)
- (b) Draw the energy-band diagram for an applied bias $V_A = -0.5$ V.
- (c) Qualitatively sketch the equilibrium ($V_A = 0$ V) charge density distribution $\rho(x)$, the electric field distribution $\mathcal{E}(x)$, and potential distribution V(x) for this contact. Show how these distributions change with an applied bias $V_A = -0.5$ V.

<u>Problem 4</u>: Schottky Diode – Small-Signal Capacitance

Consider the following reverse-bias capacitance data for a Schottky diode (n-type silicon):

Illustrate with simple quantitative sketches how the measured curve would change if

- a) the Schottky barrier $\Phi_{\rm B}$ decreases to 0.4 eV while the Si doping concentration remains the same ($N_{\rm D} = 10^{16} \, {\rm cm}^{-3}$).
- b) the semiconductor doping concentration $N_{\rm D}$ decreases to 10^{15} cm⁻³ while the Schottky barrier remains the same ($\Phi_{\rm B} = 0.8$ eV).