UNIVERSITY OF CALIFORNIA

College of Engineering

Department of Electrical Engineering and Computer Sciences

EE 130 / EE 230A, Fall 2013

Homework Assignment #6

Prof. Liu

Due at the beginning of class on Thursday 10/10/13

<u>Problem 1</u>: pn Junction -- Carrier Concentration and Current Component Profiles

Consider a Si pn step junction maintained at room temperature with applied voltage $V_A = (kT/q) \cdot ln(10^{10}) \approx 0.60 \text{ V}$. The p-side and n-side dopant concentrations $N_A = 10^{17} \text{ cm}^{-3}$ and $N_D = 10^{18} \text{ cm}^{-3}$, respectively. (You may assume that each side is uncompensated.) The minority carrier recombination lifetimes are $\tau_n = 10^{-6}$ a on the p-side and p-side and p-side respectively.

- = 10^{-6} s and $\tau_p = 10^{-6}$ s on the p-side and n-side, respectively.
- (a) Calculate the minority carrier concentrations at the edges of the depletion region.
- (b) Calculate the minority carrier diffusion lengths on the p-side and on the n-side. <u>Hint</u>: Use the values of carrier mobilities from Lecture 4 Slide 17.
- (c) Based on your answers to (a) and (b), sketch the minority carrier concentration profiles on a semi-log plot, assuming that each side is much longer than the minority-carrier diffusion length.
- (d) Derive expressions for the minority-carrier diffusion current in the quasi-neutral regions. Sketch the electron and hole current density components (J_N and J_P , respectively) as a function of distance on both sides of the junction. Indicate the values of J_N and J_P in the depletion region, as well as the total current density J.

Problem 2: pn Junction -- I-V Characteristics

Consider a Si pn⁺ step junction with p-side doping $N_A = 10^{17}$ cm⁻³ (uncompensated) and area $A = 10^{-2}$ cm². The electron recombination lifetime in the p-side is $\tau_n = 10^{-6}$ s.

(a) Compute the ideal diode current at T = 300K for

- (i) $V_A = -5 V$ (ii) $V_A = +0.1 V$ (iii) $V_A = +0.5 V$ (iv) $V_A = +0.8 V$
- (b) Assuming that τ_n does not vary significantly with temperature, repeat (a) for T = 400K. <u>Hint</u>: Do not forget to take into account the dependence of mobility (and hence diffusion constant) on temperature – see Lecture 4 Slide 18. Also, you should account for the temperature dependence of the energy bandgap of Si: $E_G = 1.205 - 2.8 \times 10^{-4} (T)$ for T > 300K (from HW#2, Problem 4).
- (c) Based on your answers in parts (a) and (b), sketch the diode *I-V* characteristics (on a linear scale) for T = 300K and T = 400K. Describe the key changes in the diode *I-V* characteristic with increasing temperature.

Problem 3: Narrow-Base Diode

Consider a Si pn⁺ step junction maintained at room temperature with cross-sectional area $A = 10^{-2}$ cm². The p-side and n-side dopant concentrations $N_A = 10^{17}$ cm⁻³ and $N_D = 10^{19}$ cm⁻³, respectively. (You may assume that each side is uncompensated.) The minority carrier recombination lifetimes are $\tau_n = 10^{-6}$ s and $\tau_p = 10^{-6}$ s on the p-side and n-side, respectively. The width of the quasi-neutral n-type region is 0.1 µm, for $V_A = 0$ V. (The p-side is much longer than the electron diffusion length.)

- (a) Is this a narrow-base diode? Justify your answer.
- (b) Calculate the diode saturation current I_0 .
- (c) What value of applied bias V_A is required to obtain a diode current of 1 mA?

Problem 4: pn Junction Reverse Breakdown

Consider a Si p⁺n step junction with n-side doping $N_{\rm D} = 10^{17}$ cm⁻³ maintained at room temperature:

- (a) Calculate the breakdown voltage V_{BR} , assuming that the critical electric field $\mathcal{E}_{CR} = 7 \times 10^5$ V/cm.
- (b) Calculate the depletion width at the breakdown voltage.
- (c) What is the dominant breakdown mechanism? Explain briefly.
- (d) How would $V_{\rm BR}$ change if the temperature were to be increased? Explain briefly.