UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

EE 130/230A Fall 2013 Prof. Liu

Homework Assignment #9

Due at the beginning of class on Thursday, 10/31/13

Problem 1: MOS Capacitor - Areal Charge Density

Consider an n+ poly-Si-gated capacitor ($\Phi_{\rm M} = 4.05 \text{ eV}$) with oxide thickness $x_o = 3 \text{ nm}$ and p-type Si substrate doping $N_{\rm A} = 10^{17} \text{ cm}^{-3}$, maintained at T = 300K.

- (a) Calculate the flatband voltage, V_{FB} .
- (**b**) Calculate the threshold voltage, $V_{\rm T}$.
- (c) Plot the value of the total areal charge density (in C/cm²) in the Si as a function of gate voltage $V_{\rm G}$, for each of the regions of operation (accumulation, depletion and inversion). Indicate the numerical values of areal charge density in the Si at $V_{\rm G} = V_{\rm T}$ and $V_{\rm G} = V_{\rm T} + 1$ Volt.

Problem 2: MOS Threshold Voltage

Consider an NMOS capacitor with oxide thickness $x_o = 3$ nm, maintained at T = 300K.

- (a) Generate a plot of the threshold voltage (on a linear scale) vs. Si dopant concentration (on a log
 - scale), for p-type substrate doping $N_{\rm A}$ ranging from 10^{15} cm⁻³ to 10^{18} cm⁻³, for two cases:
 - (i) Gate material is n+ poly-Si ($\Phi_M = 4.05 \text{ eV}$)
 - (ii) Gate material is a "mid-gap" metal ($\Phi_M = 4.6 \text{ eV}$)
- (b) From your plot in (a), estimate the value of N_A corresponding to a threshold voltage of 0.5 V, for each of the two cases.
- (c) Qualitatively, how would your answers to part (b) change if the oxide thickness x_o were to be decreased (*e.g.* to 2 nm)?

Problem 3: MOS C-V characteristic

The gate capacitance vs. gate voltage characteristic of a p+ poly-Si gated MOS capacitor ($\Phi_M = 5.17 \text{ eV}$) of area 1×10⁻⁴ cm², is as shown:

- (a) Is the semiconductor (silicon) substrate doped n-type or p-type? Explain briefly.
- (b) Is the measurement frequency low or high? Explain briefly.
- (c) What is the thickness of the gate oxide (SiO_2) , x_0 ?
- (d) Estimate the semiconductor doping concentration. (Note: You should be able to estimate the flatband voltage, V_{FB} , from the C-V plot above.)
- (e) Based on your answers to (c) and (d), calculate the value of the minimum capacitance, C_{\min} .