PROBLEM SET \#1

Issued: Tuesday, Sep. $3^{\text {rd }}, 2013$
Due: Wednesday, Sep. $11^{\text {th }}$, 2013, 8:00 a.m. in the EE 140/240A homework box

1. An $n p n$ transistor has an emitter area of $10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m}$. The doping concentrations are as follows: in the emitter $N_{D}=10^{19} \mathrm{~cm}^{-3}$, in the base $N_{A}=10^{17} \mathrm{~cm}^{-3}$, and in the collector $N_{D}=$ $10^{15} \mathrm{~cm}^{-3}$. The transistor operates at $T=300 \mathrm{~K}$, where $n_{i}=1.5 \times 10^{10} \mathrm{~cm}^{-3}$. For electrons diffusing in the base, $L_{n}=19 \mu \mathrm{~m}$ and $D_{n}=21.3 \mathrm{~cm}^{2} / \mathrm{s}$. For holes diffusing in the emitter, $L_{p}=$ $0.6 \mu \mathrm{~m}$ and $D_{p}=1.7 \mathrm{~cm}^{2} / \mathrm{s}$. Calculate the saturation current I_{s} and β assuming that the base width W is (a) $1 \mu \mathrm{~m}$; (b) $2 \mu \mathrm{~m}$; (c) $5 \mu \mathrm{~m}$.
2. (a) Calculate the built-in potential, depletion layer depths, and maximum field in a planeabrupt $p n$ junction in silicon with doping densities $N_{A}=8 \times 10^{15}$ atoms $/ \mathrm{cm}^{3}$ (p-type) and $N_{D}=10^{17}$ atoms $/ \mathrm{cm}^{3}$ (n-type). Do this for (i) 5 V reverse bias, (ii) zero external bias and (iii) 0.3 V forward bias.
(b) Calculate the junction capacitance at (i) 5 V reverse bias, (ii) zero bias and (iii) 0.3 V forward bias, respectively. Assume a junction area of $2 \times 10^{-5} \mathrm{~cm}^{2}$.
3. A lateral $p n p$ transistor has an effective base width of $10 \mu \mathrm{~m}$
(a) If the emitter-base depletion capacitance is 2 pF in the forward-active region and is constant, calculate the device f_{T} at $I_{C}=-0.5 \mathrm{~mA}$ (Neglect C_{μ}). Also, calculate the minority-carrier charge stored in the base of the transistor at this current level. Assume a hole diffusion constant of $D_{P}=13 \mathrm{~cm}^{2} / \mathrm{s}$ in silicon.
(b) If the collector-base depletion layer width changes $0.11 \mu \mathrm{~m}$ per volt of $V_{C E}$, calculate r_{o} for this transistor at $I_{C}=-0.5 \mathrm{~mA}$.
4. An NMOS transistor has parameters $W=10 \mu \mathrm{~m}, L=1 \mu \mathrm{~m}, k^{\prime}=194 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=0.024 \mathrm{~V}^{-1}, t_{o x}=$ $80 \AA$, $\Phi_{f}=0.3 \mathrm{~V}, V_{t 0}=0.6 \mathrm{~V}$, and $N_{A}=5 \times 10^{15}$ atoms $/ \mathrm{cm}^{3}$. Ignore velocity saturation effects.
(a) Sketch the $I_{D}-V_{D S}$ characteristics for $V_{D S}$ from 0 to 3 V and $V_{G S}=0.5 \mathrm{~V}, 1.5 \mathrm{~V}$, and 3 V . Assume $V_{S B}=0$.
(b) Sketch the $I_{D}-V_{G S}$ characteristics for $V_{D S}=2 \mathrm{~V}$ as $V_{G S}$ varies from 0 to 2 V with $V_{S B}=0$, 0.5 V , and 1 V .
5. For the devices in the Fig. PS1.1, $\left|V_{t}\right|=1 \mathrm{~V}, \lambda=0, \gamma=0, \mu_{n} C_{o x}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, L=1 \mu \mathrm{~m}$, and $W=$ $10 \mu \mathrm{~m}$. Find V_{2} and I_{2}. How do these values change if Q_{3} and Q_{4} are changed to have $W=$ $100 \mu \mathrm{~m}$.

Fig. PS1. 1
6. Calculate the DC operating points including the current flowing through each branch and DC voltage at each node for the circuits shown in Fig. PS1.2:

$$
\begin{aligned}
& V_{D D}=V_{C C}=5 \mathrm{~V}, \beta_{f}=100, V_{A} \rightarrow \infty, r_{b}=0, V_{B E(o n)}=0.7 \mathrm{~V}, V_{C E(s a t)}=0.2 \mathrm{~V}, \\
& k_{n}^{\prime}=140 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n}=0.7 \mathrm{~V}, k_{p}^{\prime}=40 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t p}=-0.8 \mathrm{~V}, \lambda=0, \\
& (\mathrm{~W} / \mathrm{L})_{1}=10 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m},(\mathrm{~W} / L)_{2}=5 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m},(\mathrm{~W} / L)_{3}=10 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m},
\end{aligned}
$$

Fig. PS1. 2

