## PROBLEM SET #1

## Issued: Tuesday, Sep. 3<sup>rd</sup>, 2013

Due: Wednesday, Sep. 11th, 2013, 8:00 a.m. in the EE 140/240A homework box

- **1.** An *npn* transistor has an emitter area of  $10\mu m \times 10\mu m$ . The doping concentrations are as follows: in the emitter  $N_D = 10^{19} \text{ cm}^{-3}$ , in the base  $N_A = 10^{17} \text{ cm}^{-3}$ , and in the collector  $N_D = 10^{15} \text{ cm}^{-3}$ . The transistor operates at T = 300K, where  $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$ . For electrons diffusing in the base,  $L_n = 19\mu m$  and  $D_n = 21.3 \text{ cm}^2/\text{s}$ . For holes diffusing in the emitter,  $L_p = 0.6\mu m$  and  $D_p = 1.7 \text{ cm}^2/\text{s}$ . Calculate the saturation current  $I_s$  and  $\beta$  assuming that the base width W is (a)  $1\mu m$ ; (b)  $2\mu m$ ; (c)  $5\mu m$ .
- 2. (a) Calculate the built-in potential, depletion layer depths, and maximum field in a planeabrupt *pn* junction in silicon with doping densities  $N_A = 8 \times 10^{15}$  atoms/cm<sup>3</sup> (p-type) and  $N_D = 10^{17}$  atoms/cm<sup>3</sup> (n-type). Do this for (i) 5V reverse bias, (ii) zero external bias and (iii) 0.3V forward bias.
  - (b) Calculate the junction capacitance at (i) 5V reverse bias, (ii) zero bias and (iii) 0.3V forward bias, respectively. Assume a junction area of  $2 \times 10^{-5}$  cm<sup>2</sup>.
- **3.** A lateral *pnp* transistor has an effective base width of  $10\mu m$ 
  - (a) If the emitter-base depletion capacitance is 2pF in the forward-active region and is constant, calculate the device  $f_T$  at  $I_C = -0.5$ mA (Neglect  $C_{\mu}$ ). Also, calculate the minority-carrier charge stored in the base of the transistor at this current level. Assume a hole diffusion constant of  $D_P = 13$  cm<sup>2</sup>/s in silicon.
  - (b) If the collector-base depletion layer width changes 0.11µm per volt of  $V_{CE}$ , calculate  $r_o$  for this transistor at  $I_C = -0.5$  mA.
- **4.** An *NMOS* transistor has parameters  $W = 10 \mu m$ ,  $L = 1 \mu m$ ,  $k' = 194 \mu A/V^2$ ,  $\lambda = 0.024 V^{-1}$ ,  $t_{ox} = 80 \text{\AA}$ ,  $\Phi_f = 0.3 \text{V}$ ,  $V_{t0} = 0.6 \text{V}$ , and  $N_A = 5 \times 10^{15}$  atoms/cm<sup>3</sup>. Ignore velocity saturation effects.
  - (a) Sketch the  $I_D$ - $V_{DS}$  characteristics for  $V_{DS}$  from 0 to 3V and  $V_{GS} = 0.5$ V, 1.5V, and 3V. Assume  $V_{SB} = 0$ .
  - (**b**) Sketch the  $I_D$ - $V_{GS}$  characteristics for  $V_{DS} = 2V$  as  $V_{GS}$  varies from 0 to 2V with  $V_{SB} = 0$ , 0.5V, and 1V.

## ANALOG INTEGRATED CIRCUITS

## C. NGUYEN

**5.** For the devices in the Fig. PS1.1,  $|V_t| = 1$ V,  $\lambda = 0$ ,  $\gamma = 0$ ,  $\mu_n C_{ox} = 50 \mu A/V^2$ ,  $L = 1 \mu m$ , and  $W = 10 \mu m$ . Find  $V_2$  and  $I_2$ . How do these values change if  $Q_3$  and  $Q_4$  are changed to have  $W = 100 \mu m$ .



Fig. PS1.1

- **6.** Calculate the DC operating points including the current flowing through each branch and DC voltage at each node for the circuits shown in Fig. PS1.2:
  - $V_{DD} = V_{CC} = 5V, \beta_f = 100, V_A \rightarrow \infty, r_b = 0, V_{BE(on)} = 0.7V, V_{CE(sat)} = 0.2V,$  $\dot{k_n} = 140\mu A/V^2, V_{tn} = 0.7V, \dot{k_p} = 40\mu A/V^2, V_{tp} = -0.8V, \lambda = 0,$  $(W/L)_I = 10\mu m/0.5\mu m, (W/L)_2 = 5\mu m/0.5\mu m, (W/L)_3 = 10\mu m/0.5\mu m,$



**Fig. PS1.2**