PROBLEM SET #1A

Issued: Monday, Oct.14th, 2013

Due: Friday, Nov. 8th, 2013, 8:00 a.m. in the EE 140/240A homework box

1. Determine the value of sensitivity *S* of output current to supply voltage for the circuit in Fig. PSA1.1, where $S = (V_{CC}/I_{OUT})(\partial I_{OUT}/\partial V_{CC})$.

Fig. PSA1.1

- 2. Fig. PSA1.2 depicts a self-biasing V_t reference circuit capable of providing bias currents nearly independent of supply voltage.
 - (a) Provide expressions for the DC output current I_{OUT} and bias currents I_{BIAS1} and I_{BIAS2} in terms of circuit elements and transistor parameters and calculate numerical values. Ignore body effect and channel length modulation.
 - (b) Calculate the ratio of small-signal variations in I_{OUT} to small-signal variations in V_{DD} at low frequencies, i.e., find the gain from v_{dd} to i_{out} . Ignore body effect but include finite transistor r_o in this calculation.

MOS parameters:

 $/V_{th}/=0.5V, k_n=200\mu A/V^2, k_p=100\mu A/V^2, \lambda=0.05V^{-1}, V_{DD}=3V, R=1.75k\Omega,$

 $(W/L)_1 = 12.5 \mu m/0.25 \mu m, (W/L)_2 = 6.25 \mu m/0.25 \mu m, (W/L)_3 = 31.25 \mu m/0.25 \mu m,$

 $(W/L)_4 = 6.25 \mu m/0.25 \mu m, (W/L)_5 = 12.5 \mu m/0.25 \mu m, (W/L)_6 = 15.5 \mu m/0.25 \mu m.$

Fig. PSA1.2

- **3.** The circuit of Fig. PSA1.3 is used to provide a bandgap reference voltage V_{OUT} . In the circuit, $R_1 = 1 k\Omega$ and $R_2 = 2 k\Omega$. For simplicity, assume that $M_1 - M_2$ and $M_3 - M_4$ are identical pairs with $(W/L)_{1-4} = 50/0.5$ and $I_{D1} = I_{D2} = 50 \mu A$. Also assume $\lambda = \gamma = 0$, and Q_3 is identical to Q_1 whereas Q_2 consists of *n* unit transistors identical to Q_1 and Q_3 , in parallel. For calculations, assume $\partial V_{BE}/\partial T = -1.5 \text{mV}/^{\circ}\text{K}$ and $\partial V_T/\partial T = +0.087 \text{mV}/^{\circ}\text{K}$ at room temperature.
 - (a) If $(W/L)_5$ is the same as $(W/L)_{1-4}$, determine the value of *n* such that V_{OUT} has zero TC_f at room temperature.
 - (b) If $(W/L)_5$ is 4× that of $(W/L)_{1-4}$, again determine the value of *n* such that V_{OUT} has zero TC_f at room temperature.
 - (c) Now, assume $(W/L)_5$ is $\alpha \times$ that of $(W/L)_{1-4}$, calculate α and *n* values so that V_{OUT} has zero TC_f at room temperature with minimum $\alpha + n$ value. (Numerical solution is allowed.)

Fig. PSA1.3

FALL 2013 C. NGUYEN

4. For the voltage reference below in Fig. PSA1.4, resistor R_2 is trimmed after fabrication to produce an output voltage that for the particular technology used (and assuming an ideal op amp) is known to give a zero output voltage temperature coefficient TC_f at room temperature (300K). In solving this problem, assume that $R_1 \approx R_2$, even after trimming, since the trim range will normally be small. (Note that you do not need to know the values of the resistors to do this problem.)

Fig. PSA1.4

- (a) Assuming an ideal op amp (i.e., with $V_{OS} = 0$ V), determine the output voltage V_o that sets the output voltage temperature coefficient to zero at room temperature.
- (b) Suppose now that the op amp actually has an offset voltage V_{OS} of 3mV. Calculate the resulting deviation from the actual zero TC_f output voltage that would result after R_2 is trimmed to make V_o equal to the answer of part (a).
- (c) What is the TC_f of V_o at room temperature when V_{OS} is 3mV and R_2 is trimmed as in part (b)?