PROBLEM SET #2

Issued: Tuesday, Sep. 10rd, 2013

Due: Wednesday, Sep. 18th, 2013, 8:00 a.m. in the EE 140/240A homework box

1. Use inspection analysis to write expressions for the input resistance R_i , output resistance R_o , and gain v_{out}/v_{in} for each of the amplifiers in Fig PS2.1. The expressions should be in terms of the given elements and parameters of the small-signal equivalent circuits (i.e., g_m , r_{π} , r_o , β , etc.) for the transistors used. For each circuit, assume that all capacitors shown have infinite values.

Fig. PS2.1

2. Use inspection analysis to write expressions for the input resistance R_{in} , output resistance R_{out} , and gain v_{out}/v_{in} for each of the amplifiers in Fig. PS2.2. The expressions should be in terms of the given elements and parameters of the small-signal equivalent circuits (i.e., g_m , r_{π} , r_o , etc.) for the transistors used. For each circuit, assume that all the capacitors shown have infinite values.

Fig. PS2.2

FALL 2013 C. NGUYEN

3. For the Darlington emitter follower of Fig. PS2.3, determine the dc collector currents in Q_1 and Q_2 , and then the small-signal input resistance and voltage gain. Neglect r_{μ} , r_b and r_o , and assume that $V_{BE}(on) = 0.7$ V, $\beta = 200$, $V_T = 26$ mV (at 300k). Use inspection analysis wherever possible.

Fig. PS2.3

4. Calculate the output resistance, R_{out} , of the circuit in figure PS2.4 as a function of I_{Bias} . Do not neglect r_{o1} or r_{o2} in this calculation, but you may neglect r_b and r_{μ} . If $I_{C2} = 1$ mA, what is R_{out} for $I_{Bias} = 1$ mA and $I_{Bias} = 0$, assuming $V_A = 100$ V?

Fig. PS2.4