PROBLEM SET \#5

Issued: Tuesday, Oct. $1^{\text {st }}, 2013$
Due: Wednesday, Oct. $9^{\text {th }}, 2013$, 8:00 a.m. in the EE 140/240A homework box

1. Calculate the output current Iout of the CMOS Widlar current source shown in Fig. PS5.1. Here, $I_{I N}=100 \mu \mathrm{~A}, V_{D D}=3 \mathrm{~V},(W / L)_{1}=(W / L)_{2}=25, k^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $R_{2}=4 \mathrm{k} \Omega$. Assume $\lambda=$ 0 and ignore the body effect.

Fig. PS5. 1
2. Design the circuit shown in Figure PS5.2 to meet the following constraints:
a) Transistor M_{2} operates in the saturated region for values of $V_{\text {OUT }}$ to within 0.2 V of ground.
b) The output current must be $50 \mu \mathrm{~A}$.
c) The output current must change less than 0.02% for a change in output voltage of 1 V .

You are to minimize the total device area within the given constraints. Here the device area will be taken to be the total gate area ($W \times L$ product). Ignore the body effect for simplicity. Make all devices identical except M_{4}. Use the following process parameters: $t_{o x}=8 \mathrm{~nm}, \mu_{n}=$ $450 \mathrm{~cm}^{2} / \mathrm{VS}, L_{d}=0.09 \mu \mathrm{~m}, d X_{d} / d V_{D S}=0.02 \mu \mathrm{~m} / \mathrm{V}$ (channel length modulation parameter, use it to get λ).

Fig. PS5. 2
3. For the current source circuit shown in Fig. PS5.3, assume $V_{t}=0.7 \mathrm{~V}, k^{\prime}=110 \mu \mathrm{~A} / \mathrm{V}^{2}, \gamma=0.4$, $\lambda=0.04 \mathrm{~V}^{-1}, 2\left|\varphi_{f}\right|=0.7$.
a) Design the size of M_{4} to allow a minimum output voltage of $2 V_{O V, M I}$. (You may ignore body effect for this part.)
b) Considering the body effect, what is the minimum output voltage that ensures all transistors are in saturation region? What is the output resistance?
c) Suppose the reference current sources are reduced to $5 \mu \mathrm{~A}$. Size M_{3} and M_{4} to achieve the same output current as that of the circuit in part (a).

Fig. PS5.3
4. This problem concerns the simple MOS current mirror shown in Figure PS5.4a.
(a) Design the current mirror such that all of the following is satisfied:
i. The currents $I_{2}=0.5 \mathrm{~mA}$ and $I_{3}=2 \mathrm{~mA}$ (approximately).
ii. The minimum output voltage for which M_{2} and M_{3} work as current sources is 200 mV .
iii. The output currents change less than 1% for a change in output voltage of 1 V . iv. All transistors should have the same channel length.

You are to minimize the total circuit area which is approximately given by

$$
A=\sum_{i=1}^{3} W_{i} L_{i}+\beta R_{1}
$$

The parameter λ can be calculated as $\lambda=\alpha / L$. α and β are constants.

$$
\alpha=0.02 \frac{\mu m}{V}, \beta=0.2 \frac{\mu m^{2}}{\Omega}, C_{o x}=5 \frac{f F}{\mu m^{2}}, \mu_{n}=450 \frac{\mathrm{~cm}^{2}}{V \mathrm{~s}}, V_{t h}=0.6 \mathrm{~V}
$$

(b) A layout designer used long and narrow wires to connect sources of M_{1}, M_{2}, and M_{3}, which resulted in small parasitic resistances $R_{p}=2 \Omega$, as shown in Figure PS5.4b. What are the new values of I_{2} and I_{3} ? You can use numerical methods if needed.

Fig. PS5. 4

