PROBLEM SET #6

Issued: Tuesday, Oct. 8st, 2013

Due: Wednesday, Oct. 16th, 2013, 8:00 a.m. in the EE 140/240A homework box

- 1. For the high-swing cascode mirror shown in Fig. PS6.1 answer the following questions:
 - a) Calculate W such that the minimum output voltage for which both M_1 and M_2 are in saturation is 0.5V. Assume that M_3 - M_5 can provide appropriate gate biases for M_1 and M_2 .
 - **b**) Calculate W_5 in order to achieve the minimum output voltage calculated in (a).
 - c) Briefly explain the function of M_4 .
 - d) What is the output resistance of this current source?
 - e) What is the change in I_{OUT} for $\Delta V_{OUT}=1$ V?
 - f) What is the resistance seen by the I_{IN} that biases M_3 and M_4 ?
 - **g**) Calculate input voltages V_{IN1} and V_{IN2} .
 - **h**) Replace transistors M_5 and M_6 with one diode connected device. What is the W of the new device?

$$I_{IN} = 100 \,\mu\text{A}, \quad L = 1 \,\mu\text{m} \quad C_{ox} = 5 \,\frac{fF}{\mu\text{m}^2}, \quad \mu_n = 450 \,\frac{cm^2}{Vs}, \quad V_{th0} = 0.6V, \quad \lambda = 0.02V^{-1}, \quad \gamma = 0$$

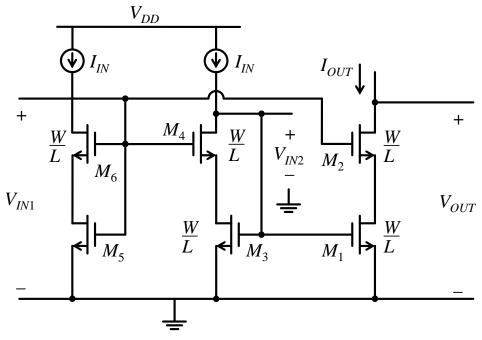


Fig. PS6.1

ANALOG INTEGRATED CIRCUITS

FALL 2013 C. NGUYEN

2. Consider the low voltage cascode current mirror shown in Fig. PS6.2, for which $10\mu A$ reference ideal current sources I_1 and I_2 are available, and the desired output current is $I_{out} = 100\mu A$. Assuming the size of M_3 is (*W/L*), determine the (*W/L*)'s of M_1 , M_2 , M_4 , and M_5 relative to that of M_3 to provide the maximum headroom at the I_{out} node. In your design, M_1 , M_2 , M_3 , and M_4 should all have the same V_{ov} and be operating in saturation. Assume $\lambda = 0$ and ignore the body effect.

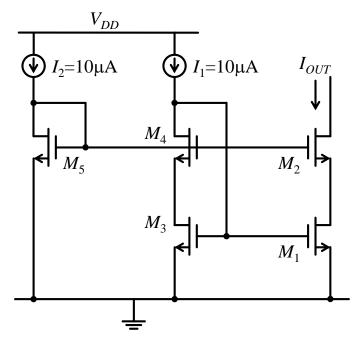


Fig. PS6.2

- **3.** In the circuit shown in Fig. PS6.3, a source follower using a wide transistor M_4 and a small bias current is inserted in series with the gate of M_3 so as to bias M_2 at the edge of saturation. Assuming $M_0 M_3$ are identical and $\lambda \neq 0$, estimate the mismatch between I_{out} and I_{REF} if:
 - (a) $\gamma = 0$
 - **(b)** $\gamma \neq 0$



Fig. PS6.3

4. Provide an expression and calculate a numerical value for the output current mismatch between I_{C2} and I_{C3} shown in Fig. PS6.4 caused by finite fabrication tolerances.

Nominal parameter values:

$$\beta = 100, I_s = 37.751 \times 10^{-15} \text{A}, V_T = 25 \text{mV}, R_0 = 3.4 \text{k}\Omega, R_1 = R_2 = R_3 = 1 \text{k}\Omega.$$

Fabrication tolerances:

$$\Delta\beta/\beta = 10\%, \Delta I_s/I_s = 5\%, \Delta R/R = 20\%.$$

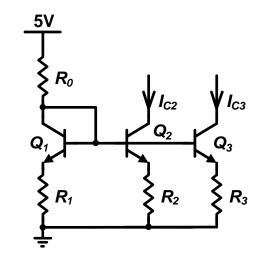


Fig. PS6.4