PROBLEM SET \#6

Issued: Tuesday, Oct. $8^{\text {st }}, 2013$
Due: Wednesday, Oct. $16^{\text {th }}$, 2013, 8:00 a.m. in the EE 140/240A homework box

1. For the high-swing cascode mirror shown in Fig. PS6.1 answer the following questions:
a) Calculate W such that the minimum output voltage for which both M_{1} and M_{2} are in saturation is 0.5 V . Assume that $M_{3}-M_{5}$ can provide appropriate gate biases for M_{1} and M_{2}.
b) Calculate W_{5} in order to achieve the minimum output voltage calculated in (a).
c) Briefly explain the function of M_{4}.
d) What is the output resistance of this current source?
e) What is the change in $I_{\text {OUT }}$ for $\Delta V_{\text {OUT }}=1 \mathrm{~V}$?
f) What is the resistance seen by the $I_{I N}$ that biases M_{3} and M_{4} ?
g) Calculate input voltages $V_{I N 1}$ and $V_{I N 2}$.
h) Replace transistors M_{5} and M_{6} with one diode connected device. What is the W of the new device?
$I_{I N}=100 \mu A, \quad L=1 \mu m \quad C_{o x}=5 \frac{f F}{\mu m^{2}}, \quad \mu_{n}=450 \frac{\mathrm{~cm}^{2}}{V s}, \quad V_{t h 0}=0.6 \mathrm{~V}, \quad \lambda=0.02 \mathrm{~V}^{-1}, \quad \gamma=0$

Fig. PS6. 1
2. Consider the low voltage cascode current mirror shown in Fig. PS6.2, for which $10 \mu \mathrm{~A}$ reference ideal current sources I_{1} and I_{2} are available, and the desired output current is $I_{\text {our }}=$ $100 \mu \mathrm{~A}$. Assuming the size of M_{3} is (W / L), determine the (W / L)'s of M_{1}, M_{2}, M_{4}, and M_{5} relative to that of M_{3} to provide the maximum headroom at the $I_{\text {out }}$ node. In your design, M_{1}, M_{2}, M_{3}, and M_{4} should all have the same $V_{o v}$ and be operating in saturation. Assume $\lambda=0$ and ignore the body effect.

Fig. PS6. 2
3. In the circuit shown in Fig. PS6.3, a source follower using a wide transistor M_{4} and a small bias current is inserted in series with the gate of M_{3} so as to bias M_{2} at the edge of saturation. Assuming $M_{0}-M_{3}$ are identical and $\lambda \neq 0$, estimate the mismatch between $I_{o u t}$ and $I_{R E F}$ if:
(a) $\gamma=0$
(b) $\gamma \neq 0$

Fig. PS6. 3
4. Provide an expression and calculate a numerical value for the output current mismatch between $I_{C 2}$ and $I_{C 3}$ shown in Fig. PS6.4 caused by finite fabrication tolerances.

Nominal parameter values:

$$
\beta=100, I_{s}=37.751 \times 10^{-15} \mathrm{~A}, V_{T}=25 \mathrm{mV}, R_{0}=3.4 \mathrm{k} \Omega, R_{l}=R_{2}=R_{3}=1 \mathrm{k} \Omega .
$$

Fabrication tolerances:
$\Delta \beta / \beta=10 \%, \Delta I_{s} I_{s}=5 \%, \Delta R / R=20 \%$.

Fig. PS6. 4

