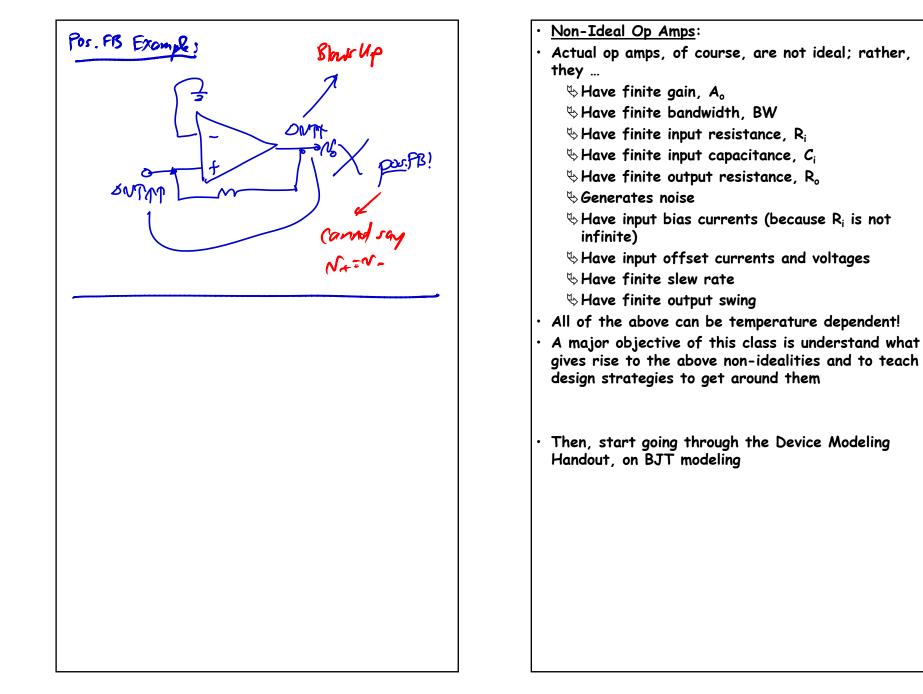

<u>EE 140/240A</u>: Analog Integrated Circuits <u>Lecture 1w</u>: Admin & Overview

<u>Announcements</u> : <u>EE 140/240A</u> : Analog Integrated Circuits <u>Instructor</u> : Prof. Clark TC. Nguyen Go though Course information sheet Syllabus Grading Information and Policy	 For the course website, just google ee140 The website is already up and running This course will be screencast EE 140 screencast previously, so you can actually view previous year lectures, too If you miss a lecture Can view lectures at either http://itunes.berkeley.edu/ or http://www.youtube.com/ucberkeley
 Hand out class account sheets About Me: <u>Education</u>: Ph.D., University of California at Berkeley, 1994 <u>1995</u>: joined the faculty of the Dept. of EECS at the University of Michigan <u>2006</u>: (came back) joined the faculty of the Dept. of EECS at UC Berkeley <u>Research</u>: microelectromechanical systems (MEMS) that employ transistor-level circuit design <u>Teaching</u>: (at the UofM) mainly transistor circuit design courses; (UC Berkeley) 140, 143, 240A, 243, 245 <u>2001</u>: founded Discera, the first company to commercialize vibrating RF MEMS technology <u>Mid-2002 to 2005</u>: DARPA MEMS program manager Is ran 10 different MEMS-based programs <u>topics</u>: power generation, chip-scale atomic clock, gas analyzers, nuclear power sources, navigation-grade gyros, on-chip cooling, micro environmental control 	 Warning: It's a very bad idea not to come to lecture in person People who think they will watch the videos, often don't get time to do so This course now "contains" EE 240A EE 240A same as 140, but with additional material for graduate students, mainly MEng Additional homework problems Additional project specs or a different project altogether Office Hour Changes?: Discussion sections start next week Need to change the M 3-4 discussion Can we do M 5-6?F 4-5 possible

<u>EE 140/240A</u>: Analog Integrated Circuits <u>Lecture 1w</u>: Admin & Overview



Copyright © 2013 Regents of the University of California

<u>EE 140/240A</u>: Analog Integrated Circuits <u>Lecture 1w</u>: Admin & Overview

CTN 8/29/13

