PROBLEM SET #2

Issued: Tuesday, Sep. 9, 2015

Due (at 8 a.m.): Wednesday, Sep. 16, 2015, in the EE 140/240A HW box near 125 Cory.

1. Use inspection analysis to write expressions for the input resistance R_{in} , output resistance R_{out} , and gain v_{out}/v_{in} for each of the amplifiers in Fig PS2.1. The expressions should be in terms of the given elements and parameters of the small-signal equivalent circuits (i.e., g_m , r_n , r_n , β , etc.) for the transistors used. For each circuit, assume that all capacitors shown have infinite values.

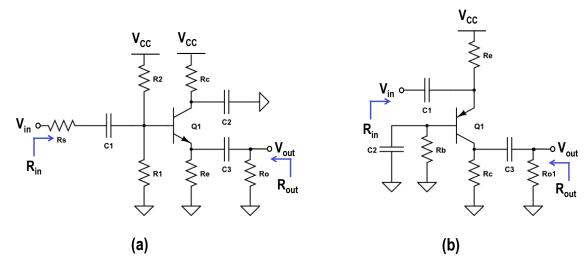


Fig. PS1

2. Use inspection analysis to write expressions for the input resistance R_{in} , output resistance R_{out} , and gain v_{out}/v_{in} for each the amplifiers in Fig. PS2. The expressions should be in terms of the given elements and parameters of the small-signal equivalent circuits (i.e., g_m , r_o , etc.) for the transistors used. For each circuit, assume that all the capacitors shown have infinite values. Ignore body-effect. For amplifier (c), assume R_s is much smaller than r_o .

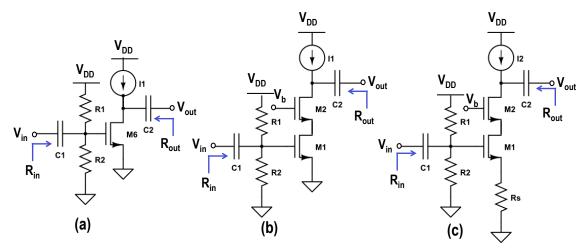


Fig. PS2

- **3.** Consider the following questions using the parameter value list in Table PS.3. Assume all MOSFET share the same parameters except for the one specified. Ignore body-effect.
 - (a) Provide expressions for the input resistance R_{in} , output resistance R_{out} , and gain v_{out}/v_{in} for the amplifier in Fig. PS3. Assume V_b biases all the transistors properly in saturation region.
 - (b) Redo Problem (a) with the amplifier shown in Fig. PS2-(b). Assume V_b biases all the transistors properly in saturation region.
 - (c) Briefly compare the results you get from part (a) and (b) and identify advantages or disadvantages between the two amplifiers.

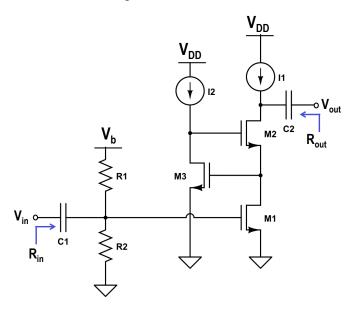


Fig. PS3

Parameter	Value	Parameter	Value
M1 Width (W)	16 <i>µ</i> m	Oxide relative permittivity (\mathcal{E}_r)	3.9
M2 Width (W)	8 <i>μ</i> m	Channel Length Modulation Coeff. (λ)	0.2 V ⁻¹
M3 Width (W)	$8\mu\mathrm{m}$	R_I	10kΩ
Channel Length (L)	$0.8 \mu \mathrm{m}$	R_2	20kΩ
Gate Dielectric Thickness (t _{ox})	60Å	I_{l}	1mA
Threshold Voltage (V _{TB})	0.6V	I_2	0.1mA
Electron Mobility (μ_n)	$1400cm^2/Vs$	V_{DD}	3.3V

Table. PS3

- **4.** Suppose the BJTs in the two amplifiers of Fig. PS4 have the same $\beta = 100$ and that they are properly biased by V_{b1} and V_{b2} such that the nominal bias current $I_{C1} = I_{C2} = 0.5$ mA. Assume also that V_{b1} and V_{b2} are unstable, such that I_C varies by $\pm 20\%$. Ignore Early effect.
 - (a) For both amplifiers, calculate the corresponding ranges of the input resistance R_{in} , output resistance R_{out} , and gain v_{out}/v_{in}
 - (b) Based on the result of problem 4-(a), briefly compare the two amplifiers, stating advantages and disadvantages of one over the other.



Fig. PS4