PROBLEM SET #3

Issued: Tuesday, Sep. 15, 2015

Due (at 8 a.m.): Wednesday, Sep. 23, 2015, in the EE 140/240A HW box near 125 Cory.

*Unless otherwise stated, assume all the transistors are properly biased in the saturation region.

- 1. For each of the amplifiers in Fig. PS3-1, V_{cc} =20V, $R_S = R_L = 10 \text{k}\Omega$, V_b = 5V, and V_{EE} = 10V. For all BJTs: $\beta = 100$, $C_{\mu} = 2 \text{pF}$, and $f_T = 400 \text{MHz}$. Ignore Early effect and C_{cs} .
 - (a) Find the mid-band gain $A = V_o/V_i$, the 3-dB frequency ω_H , and the gain-bandwidth product $GBW = |A\omega_H|$.
 - (b) Briefly compare the results obtained from part (a) for the three amplifiers and identify advantages or disadvantages between the three amplifiers. Hint: Consider the following metrics: power consumption, output voltage swing, gain, bandwidth, and GBW.

For the amplifier shown in Fig. PS3-2 $V_{DD} = 5V_c R_c = 1 \text{kO} R_c$

2. For the amplifier shown in Fig. PS3-2, $V_{DD} = 5V$, $R_S = 1 \text{k}\Omega$, $R_1 = 5 \text{k}\Omega$, $R_D = 4 \text{k}\Omega$, $R_B = 0.8 \text{k}\Omega$, $R_L = 50\Omega$, and $C_1 = C_2 = \infty$. All transistors have the same parameters $V_{th0} = 0.75 \text{V}$, $C_{ox} = 15 \text{fF/}\mu\text{m}^2$, $\mu_n C_{ox} = 50 \mu\text{A/V}^2$, $\lambda = 0$, and $C_{ov} = 0.75 \text{fF/}\mu\text{m}$. You can ignore C_{db} and C_{sb} . All channel lengths are $0.5 \mu\text{m}$.

Fig. PS3-1

- (a) Calculate R_2 , W_1 , and W_2 such that the overdrive voltage of both M_1 and M_2 are 250mV and the voltage at the point A is equal to 2V when no input signal is applied.
- (b) Find midband voltage gain V_o/V_i , R_{in} , and R_{out} .
- (c) Find the ω_H of the circuit. Point out which capacitor dominates.

Fig. PS3-2

- **3.** Consider the common-source amplifier with source resistance R_S in fig. PS3-3.
 - (a) Derive an expression for the mid-band gain V_o/V_i .
 - (b) Find the ω_H of the circuit. You can neglect C_{sb} and C_{db}
 - (c) Given that $R_{in} = 100 \text{k}\Omega$, $g_m = 4 \text{mA/V}$, $R_L = 5 k\Omega$, $C_{gs} = C_{gd} = 1 \text{pF}$, calculate the low-frequency gain A, 3-dB frequency ω_H , and gain-bandwidth product GBW = $|A\omega_H|$ for $R_s = 0$, 100Ω , 250Ω , respectively.
 - (d) Based on the result in (c), what's the effect of R_s on gain and bandwidth?

Fig. PS3-3

- **4.** Suppose the BJTs in the amplifier of Fig. PS3-4 have the same $\beta = 100$, $V_A = 100$ V, $C_{\mu} = 0.2$ pF, and $C_{je} = 0.8$ pF. At a bias current of 100μ A, the 2 BJTs have the same $f_T = 400$ MHz. You can neglect C_{cs} .
 - (a) Find the mid-band gain V_o/V_i and the input resistance R_{in} .
 - (b) Find the ω_H of the circuit. Point out which capacitor dominates.
 - (c) Find the mid-band gain V_o/V_i and ω_H of the circuit with the bias current increased to 1mA.
 - (d) Briefly compare the results of parts (a), (b), and (c). What is the benefit you got from increasing the bias current?

Fig. PS3-4