PROBLEM SET \#3

Issued: Tuesday, Sep. 15, 2015
Due (at 8 a.m.): Wednesday, Sep. 23, 2015, in the EE 140/240A HW box near 125 Cory.
*Unless otherwise stated, assume all the transistors are properly biased in the saturation region.

1. For each of the amplifiers in Fig. PS3-1, $V_{c c}=20 \mathrm{~V}, R_{S}=R_{L}=10 \mathrm{k} \Omega, V_{b}=5 \mathrm{~V}$, and $V_{E E}=-$ 10 V . For all BJTs: $\beta=100, C_{\mu}=2 \mathrm{pF}$, and $f_{T}=400 \mathrm{MHz}$. Ignore Early effect and $C_{c s}$.
(a) Find the mid-band gain $A=V_{o} / V_{i}$, the $3-\mathrm{dB}$ frequency ω_{H}, and the gain-bandwidth product $G B W=\left|A \omega_{H}\right|$.
(b) Briefly compare the results obtained from part (a) for the three amplifiers and identify advantages or disadvantages between the three amplifiers. Hint: Consider the following metrics: power consumption, output voltage swing, gain, bandwidth, and GBW.

Fig. PS3-1
2. For the amplifier shown in Fig. PS3-2, $V_{D D}=5 V, R_{S}=1 \mathrm{k} \Omega, R_{1}=5 \mathrm{k} \Omega, R_{D}=4 \mathrm{k} \Omega, R_{B}=$ $0.8 \mathrm{k} \Omega, R_{L}=50 \Omega$, and $C_{1}=C_{2}=\infty$. All transistors have the same parameters $V_{\text {th } 0}=0.75 \mathrm{~V}$, $C_{o x}=15 \mathrm{fF} / \mu \mathrm{m}^{2}, \mu_{n} C_{o x}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=0$, and $C_{o v}=0.75 \mathrm{fF} / \mu \mathrm{m}$. You can ignore $C_{d b}$ and $C_{s b}$. All channel lengths are $0.5 \mu \mathrm{~m}$.
(a) Calculate R_{2}, W_{1}, and W_{2} such that the overdrive voltage of both M_{1} and M_{2} are 250 mV and the voltage at the point A is equal to 2 V when no input signal is applied.
(b) Find midband voltage gain $V_{o} / V_{i}, R_{\text {in }}$, and $R_{\text {out }}$.
(c) Find the ω_{H} of the circuit. Point out which capacitor dominates.

Fig. PS3-2
3. Consider the common-source amplifier with source resistance R_{S} in fig. PS3-3.
(a) Derive an expression for the mid-band gain V_{o} / V_{i}.
(b) Find the ω_{H} of the circuit. You can neglect $C_{s b}$ and $C_{d b}$
(c) Given that $R_{\text {in }}=100 \mathrm{k} \Omega, g_{m}=4 \mathrm{~mA} / \mathrm{V}, R_{L}=5 \mathrm{k} \Omega, C_{g s}=C_{g d}=1 \mathrm{pF}$, calculate the lowfrequency gain $A, 3-\mathrm{dB}$ frequency ω_{H}, and gain-bandwidth product GBW $=\left|A \omega_{H}\right|$ for $R_{S}=0,100 \Omega, 250 \Omega$, respectively.
(d) Based on the result in (c), what's the effect of R_{S} on gain and bandwidth?

Fig. PS3-3
4. Suppose the BJTs in the amplifier of Fig. PS3-4 have the same $\beta=100, V_{A}=100 \mathrm{~V}, C_{\mu}=$ 0.2 pF , and $C_{j e}=0.8 \mathrm{pF}$. At a bias current of $100 \mu \mathrm{~A}$, the 2 BJTs have the same $f_{T}=$ 400 MHz . You can neglect $C_{c s}$.
(a) Find the mid-band gain V_{o} / V_{i} and the input resistance $R_{\text {in }}$.
(b) Find the ω_{H} of the circuit. Point out which capacitor dominates.
(c) Find the mid-band gain V_{o} / V_{i} and ω_{H} of the circuit with the bias current increased to 1 mA .
(d) Briefly compare the results of parts (a), (b), and (c). What is the benefit you got from increasing the bias current?

Fig. PS3-4

