PROBLEM SET #4

Issued: Tuesday, Sep. 22, 2015

Due (at 8 a.m.): Wednesday, Sep. 30, 2015, in the EE 140/240A HW box near 125 Cory.

- 1. This problem considers non-ideality current mirrors formed using BJT pairs. In Fig. PS4-1(a), assume Q_2 has m times the area of Q_1 , i.e., $I_{S2} = m \times I_{S1}$. Ignore Early effect.
 - (a) Assuming $\beta = \infty$, show that $I_{out} = m \times I_{ref}$
 - (b) Assuming β is finite, find the expression of I_{out} in terms of I_{ref} , β , and m.
 - (c) The error introduced by the finite β effect takes the form $1 I_{out(b)}/I_{out(a)}$. Assume $\beta = 80$, what is the largest m such that the error is smaller than 5%?
 - (d) Fig. PS4-1(b) presents a circuit that reduces the error in part (c). Assuming all transistors have the same area and β , find the expression for I_{out} in terms of I_{ref} and β .

Fig. PS4-1

- 2. Fig. PS4-2 shows a bias-network designed for circuit blocks A and B using transistors with $\mu_n C_{ox} = 200 \mu \text{A/V}^2$, $\mu_p C_{ox} = 80 \mu \text{A/V}^2$, $V_{tn} = 0.6 \text{V}$, $V_{tp} = -0.6 \text{V}$, and where all transistor lengths are $L = 0.8 \mu \text{m}$. Ignore channel-length modulation. Design all transistor widths and R to fulfill the following specifications:
 - (a) $I_{REF} = I_{REF2} = 20 \mu A$.
 - (b) During operation, circuit block A consumes 100 μ A, and V_A can vary from 0 to 1.3V.
 - (c) During operation, circuit block B consumes $50\mu A$, and V_B could vary from -1.3V to 1.3V.
 - (d) Minimize the overall circuit area. In other words, use the minimum possible device widths to fulfill the requirements.

Fig. PS4-2

- 3. For the transistors in the amplifier shown in Fig. PS4-3, $\mu_n C_{ox} = 800 \mu A/V^2$, $\mu_p C_{ox} = 400 \mu A/V^2$, $V_{tn} = 0.8 \text{V}$, $V_{tp} = -0.8 \text{V}$, and $\lambda_n = \lambda_p = 0.05 \text{V}^{-1}$. The signal source V_{sig} is a small sinusoidal signal with no DC component.
 - (a) Neglecting channel-length modulation, design the value of V_{bias} such that the output swing is maximized.
 - (b) Find the midband voltage gain V_o/V_{sig} , R_{in} , and R_{out} .
 - (c) How large can V_{sig} swing (peak-to-peak) while M_1 and M_2 stay in saturation?

Fig. PS4-3

- **4.** Consider the BiCMOS amplifier shown in fig. PS4-4(a). The BJT has $|V_{BE}| = 0.7 \text{V}$, $\beta = 200$, $C_{\mu} = 0.8 \text{pF}$, and $f_T = 600 \text{MHz}$. The NMOS transistor has $V_t = 1 \text{V}$, $\mu_n C_{ox} W/L = 2 \text{mA/V}^2$, $C_{gs} = 2 \text{pF}$, and $C_{gd} = 1 \text{pF}$. The large feedback resistor R_G helps with biasing, among other purposes. This problem considers the effect of R_G .
 - (a) Find the dc bias current for M_1 and Q_2 .
 - (b) Assuming $R_G = \infty$, find the midband voltage gain V_o/V_{sig} , R_{in} , and ω_H of the circuit. You can neglect C_{sb} and C_{db} .
 - (c) Redo part (b) with $R_G = 10 \text{M}\Omega$. Apply Miller theorem on R_G . How does R_G affect V_o/V_{sig} , R_{in} , and ω_H ?
 - (d) To mitigate the effect of R_G one could cut R_G into 2 segments and insert a large capacitor between them as in Fig. PS4-4(b). Redo part (c) with R_G replaced with this new feedback network.

Fig. PS4-4