PROBLEM SET \#4

Issued: Tuesday, Sep. 22, 2015
Due (at 8 a.m.): Wednesday, Sep. 30, 2015, in the EE 140/240A HW box near 125 Cory.

1. This problem considers non-ideality current mirrors formed using BJT pairs. In Fig. PS4-1(a), assume Q_{2} has m times the area of Q_{1}, i.e., $I_{S 2}=m \times I_{s 1}$. Ignore Early effect.
(a) Assuming $\beta=\infty$, show that $I_{\text {out }}=m \times I_{\text {ref }}$
(b) Assuming β is finite, find the expression of $I_{o u t}$ in terms of $I_{r e f}, \beta$, and m.
(c) The error introduced by the finite β effect takes the form $1-I_{\text {out }(b)} / I_{\text {out (a) }}$. Assume $\beta=80$, what is the largest m such that the error is smaller than 5% ?
(d) Fig. PS4-1(b) presents a circuit that reduces the error in part (c). Assuming all transistors have the same area and β, find the expression for $I_{\text {out }}$ in terms of $I_{r e f}$ and β.

Fig. PS4-1
2. Fig. PS4-2 shows a bias-network designed for circuit blocks A and B using transistors with $\mu_{n} C_{o x}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{p} C_{o x}=80 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n}=0.6 \mathrm{~V}, V_{t p}=-0.6 \mathrm{~V}$, and where all transistor lengths are $L=0.8 \mu \mathrm{~m}$. Ignore channel-length modulation. Design all transistor widths and R to fulfill the following specifications:
(a) $I_{R E F}=I_{R E F 2}=20 \mu \mathrm{~A}$.
(b) During operation, circuit block A consumes $100 \mu \mathrm{~A}$, and V_{A} can vary from 0 to 1.3 V .
(c) During operation, circuit block B consumes $50 \mu \mathrm{~A}$, and V_{B} could vary from -1.3 V to 1.3 V .
(d) Minimize the overall circuit area. In other words, use the minimum possible device widths to fulfill the requirements.

Fig. PS4-2
3. For the transistors in the amplifier shown in Fig. PS4-3, $\mu_{n} C_{o x}=800 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{p} C_{o x}=$ $400 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n}=0.8 \mathrm{~V}, V_{t p}=-0.8 \mathrm{~V}$, and $\lambda_{n}=\lambda_{p}=0.05 \mathrm{~V}^{-1}$. The signal source $V_{\text {sig }}$ is a small sinusoidal signal with no DC component.
(a) Neglecting channel-length modulation, design the value of $V_{\text {bias }}$ such that the output swing is maximized.
(b) Find the midband voltage gain $V_{o} / V_{\text {sig }}, R_{\text {in }}$, and $R_{\text {out }}$.
(c) How large can $V_{\text {sig }}$ swing (peak-to-peak) while M_{1} and M_{2} stay in saturation?

Fig. PS4-3
4. Consider the BiCMOS amplifier shown in fig. PS4-4(a). The BJT has $\left|V_{B E}\right|=0.7 \mathrm{~V}, \beta=200$, $C_{\mu}=0.8 \mathrm{pF}$, and $f_{T}=600 \mathrm{MHz}$. The NMOS transistor has $V_{t}=1 \mathrm{~V}, \mu_{n} C_{o x} W / L=2 \mathrm{~mA} / \mathrm{V}^{2}$, $C_{g s}=2 \mathrm{pF}$, and $C_{g d}=1 \mathrm{pF}$. The large feedback resistor R_{G} helps with biasing, among other purposes. This problem considers the effect of R_{G}.
(a) Find the dc bias current for M_{1} and Q_{2}.
(b) Assuming $R_{G}=\infty$, find the midband voltage gain $V_{o} / V_{s i g}, R_{i n}$, and ω_{H} of the circuit. You can neglect $C_{s b}$ and $C_{d b}$.
(c) Redo part (b) with $R_{G}=10 \mathrm{M} \Omega$. Apply Miller theorem on R_{G}. How does R_{G} affect $V_{o} / V_{\text {sig }}, R_{\text {in }}$, and ω_{H} ?
(d) To mitigate the effect of R_{G} one could cut R_{G} into 2 segments and insert a large capacitor between them as in Fig. PS4-4(b). Redo part (c) with R_{G} replaced with this new feedback network.

Fig. PS4-4

