PROBLEM SET #5

Issued: Thursday, Sep. 30, 2015

Due (at 8 a.m.): Wednesday, Oct. 7, 2015, in the EE 140/240A HW box near 125 Cory.

- 1. This problem considers a Wildlar current source design. In Fig. PS5-1(a), assume all BJTs have $V_{BE\{on\}}=0.7 \text{V}$ when $I_C=1 \text{mA}$. $I_{ref}=100 \mu \text{A}$.
 - (a) Assuming $\beta = \infty$, design the circuit to have $I_0 = 10\mu\text{A}$.
 - **(b)** Assuming $\beta = 200$ and $V_A = 100$ V, find the value of the output resistance R_O and the change in output current corresponding to a 5-V change in output voltage.

Fig. PS5-1

- 2. In the circuit shown in Fig. PS5.2, a source follower using a wide transistor M_4 and a small bias current is inserted in series with the gate of M_3 so as to bias M_2 at the edge of saturation. Assuming $M_0 M_3$ are identical with non-zero channel length modulation parameter, i.e. $\lambda \neq 0$, estimate the mismatch between I_{out} and I_{ref} if:
 - (a) $\gamma = 0$.
 - **(b)** $\gamma \neq 0$.

Express your final answers in terms of λ , zero-bias threshold voltage V_{t0} , threshold voltage parameter γ , Fermi level ϕ_f , transconductance parameter k_n , transistor W/L ratios, and I_1 .

Fig. PS5.2

- **3.** Fig. PS5-3 shows a cascode current mirror modified for high-swing operation.
 - (a) Find V_X and determine the minimum value of V_b .
 - (b) Estimate the deviation of I_{out} from 300 μ A if the drain voltage of M_4 is higher than V_X by 1 V.

MOS Parameters:

$$\mu_n C_{ox} = \frac{130 \mu A}{V^2}, L_{ovn} = 0.08 \mu m, V_{Tn} = 0.7, V_{Tp} = -0.8, \lambda_n = 0.1, I_{REF} = 100 \mu A.$$

$$\left(\frac{W}{L}\right)_{1,2} = \frac{20 \mu m}{0.5 \mu m}, \left(\frac{W}{L}\right)_{3,4} = \frac{60 \mu m}{0.5 \mu m}$$

Fig. PS5-3

- **4.** Fig. PS5.4 depicts a self-biasing V_t reference circuit capable of providing a current reference independent of supply voltage.
 - (a) Provide expressions for I_{out} , I_{bias1} , and I_{bias2} in terms of circuit elements and transistor parameters. Ignore the body effect and channel length modulation.
 - **(b)** Calculate the numerical values for the expressions in the previous part.
 - (c) Calculate the ratio of small-signal variations in I_{out} to small-signal variations in V_{DD} at low frequencies. Ignore the body effect but include finite transistor r_o in this calculation.

MOS Parameters:

$$\begin{split} V_{th} &= 0.5 \text{V}, k_n{'} = \frac{200 \, \mu\text{A}}{\text{V}^2}, k_p{'} = \frac{100 \, \mu\text{A}}{\text{V}^2}, \lambda = 0.05 \text{V}^{-1}, V_{DD} = 3 \text{V}, R = 1.75 \text{k}\Omega \\ & \left(\frac{W}{L}\right)_1 = \frac{12.5 \, \mu\text{m}}{0.25 \, \mu\text{m}}, \left(\frac{W}{L}\right)_2 = \frac{6.25 \, \mu\text{m}}{0.25 \, \mu\text{m}}, \left(\frac{W}{L}\right)_3 = \frac{31.25 \, \mu\text{m}}{0.25 \, \mu\text{m}} \\ & \left(\frac{W}{L}\right)_4 = \frac{6.25 \, \mu\text{m}}{0.25 \, \mu\text{m}}, \left(\frac{W}{L}\right)_5 = \frac{12.5 \, \mu\text{m}}{0.25 \, \mu\text{m}}, \left(\frac{W}{L}\right)_6 = \frac{15.5 \, \mu\text{m}}{0.25 \, \mu\text{m}} \end{split}$$

Fig. PS5-4