PROBLEM SET \#6

Issued: Wednesday, Oct. 7, 2015
Due (at 8 a.m.): Wednesday, Oct. 14, 2015, in the EE 140/240A HW box near 125 Cory.

1. Provide an expression and calculate the numerical value for the output current mismatch between $I_{C 2}$ and $I_{C 3}$ shown in Fig. PS6-1 caused by finite fabrication tolerances.
Nominal Parameter Values:
$\beta=100, I_{S}=37.751 \times 10^{-15} \mathrm{~A}, V_{T}=25 \mathrm{mV}, R_{0}=3.4 \mathrm{k} \Omega, R_{1}=R_{2}=R_{3}=1 \mathrm{k} \Omega$
Fabrication Tolerances:
$\frac{\Delta \beta}{\beta}=10 \%, \frac{\Delta I_{s}}{I_{s}}=5 \%, \frac{\Delta R}{R}=20 \%$

Fig. PS6-1
2. This problem considers the MOS current mirror shown in Figure PS6-2a.
(a) Design the current mirror such that all of the following is satisfied:
i. The currents $I_{D 2}=0.5 \mathrm{~mA}$ and $I_{D 3}=2 \mathrm{~mA}$, approximately.
ii. The minimum output voltage for which M_{2} and M_{3} work as current sources is 200 mV .
iii. The output currents change less than 1% for a 1 V change in output voltages.
iv. All transistors have the same channel length.

You are to minimize the total circuit area approximately given by:

$$
A=\sum_{i=1}^{3} W_{i} L_{i}+\beta R_{1}
$$

The parameter λ can be calculated as $\lambda=\alpha / L . \alpha$ and β are constants.

Transistor Parameters:

$$
\alpha=0.02 \frac{\mu \mathrm{~m}}{\mathrm{~V}}, \beta=0.2 \frac{\mu \mathrm{~m}^{2}}{\Omega}, C_{o x}=5 \frac{\mathrm{fF}}{\mu \mathrm{~m}^{2}}, \mu_{n}=450 \frac{\mathrm{~cm}^{2}}{\mathrm{Vs}}, V_{t h}=0.6 \mathrm{~V}
$$

(b) A layout designer used long and narrow wires to connect sources of M_{1}, M_{2}, and M_{3} which resulted in small parasitic resistors $R_{p}=2 \Omega$ as shown in Fig. PS6-2b. What are the new values of $I_{D 2}$ and $I_{D 3}$? You can use numerical methods if needed.

Fig. PS6-2
3. Calculate the mid-band gain and input resistance of the amplifiers shown in Fig. PS6-3 assuming $\beta=100$.

Fig. PS6-3
4. Due to a manufacturing defect, a large parasitic resistance R_{1} has appeared in the circuits of Fig. PS6-4. Assuming all transistors are in saturation, find an expression for the mid-band gain $G=V_{\text {out }} /\left(V_{\text {in } 1}-V_{\text {in } 2}\right)$ of each circuit. The expressions should be in terms of the given elements and parameters of the small-signal equivalent circuits (i.e., g_{m}, r_{o} etc.) for the transistors. Ignore body-effect.

Fig. PS6-4

