## PROBLEM SET #7

Issued: Friday, Oct. 16, 2015

Due (at 8 a.m.): Monday, Oct. 26, 2015, in the EE 140/240A HW box near 125 Cory.

- 1. A design error has resulted in a mismatch in the circuit of Fig. PS7-1. Specifically,  $M_2$  has twice the W/L ratio of  $M_1$ . If  $V_{id}$  is a small sine-wave signal, find an expression for
  - (a)  $I_{D1}$  and  $I_{D2}$ .
  - (b)  $V_{OV}$  for each of  $M_1$  and  $M_2$ .
  - (c) The differential gain  $A_{dm}$  in terms of  $R_D$ , I, and  $V_{OV}$ .



**Fig. PS7-1** 

- 2. The differential amplifier in Fig. PS7-2 utilizes a resistor  $R_{SS}$  to establish a 1-mA dc bias current. Note that this amplifier uses a single 5-V supply and thus needs a dc common-mode voltage  $V_{CM}$ . Transistors  $M_1$  and  $M_2$  have  $k'W/L = 2.5 \text{mA/V}^2$ ,  $V_t = 0.7 \text{V}$ , and  $\lambda = 0$ .
  - (a) Find the required value of  $V_{CM}$ .
  - (b) Find the value of  $R_D$  that results in a differential gain  $A_{dm}$  of 8 V/V.
  - (c) Determine the dc voltage at the drains
  - (d) Determine the common-mode gain  $v_D/v_{CM}$  and CMRR for this amplifier. (Hint: You need to take  $1/g_{\rm m}$  into account.)
  - (e) Use the common-mode gain found in (d) to determine the change in  $V_{CM}$  that results in  $M_1$  and  $M_2$  entering the triode region.



**Fig. PS7-2** 

3. Fig. PS7-3 shows a high-gain op amp design with cascade devices. Let  $I_{SS} = 1$ mA,  $V_{DD} = 3$ V,  $V_{B1} = 1.7$ V and  $V_{B2} = 1.6$ V. Assuming  $\gamma = 0$  and  $V_{ov,Iss} = 0.2$ V, find the mid-band gain  $v_{out}/v_{in}$ , input common-mode range, and the output swing.

## **MOS Parameters:**

$$\mu_n C_{ox} = \frac{135 \mu A}{V^2}, \mu_p C_{ox} = \frac{38 \mu A}{V^2} V_{Tn} = 0.7 \text{ V}, V_{Tp} = -0.8 \text{ V}, \lambda_n = \lambda_p = 0.1,$$

$$\left(\frac{W}{L}\right)_{1,2,3,4} = \frac{100 \mu m}{0.34 \mu m}, \left(\frac{W}{L}\right)_{5,6,7,8} = \frac{100 \mu m}{0.32 \mu m}$$



**Fig. PS7-3** 

**4.** Fig. PS7-4 shows a two-stage CMOS op amp. Let  $I_{REF} = 90 \mu A$ ,  $V_{DD} = V_{SS} = 2.5 V$ , and  $C_C = 0$ . Find the mid-band gain  $v_O/(v_+ - v_-)$ , input common-mode range, and the output swing.

## **MOS Parameters:**

$$\begin{split} \mu_n C_{ox} &= \frac{160 \, \text{µA}}{\text{V}^2} \text{,} \\ \mu_p C_{ox} &= \frac{40 \, \text{µA}}{\text{V}^2} \text{ ,} \\ V_{Tn} &= 0.7 \text{ V} \text{,} \\ V_{Tp} &= -0.8 \text{ V} \text{,} \\ \lambda_n &= \lambda_p = 0.1 \text{,} \\ \left(\frac{W}{L}\right)_{1,2} &= \frac{20 \, \text{µm}}{0.8 \, \text{µm}} \text{,} \\ \left(\frac{W}{L}\right)_{3,4} &= \frac{5 \, \text{µm}}{0.8 \, \text{µm}} \text{,} \\ \left(\frac{W}{L}\right)_{5,7,8} &= \frac{40 \, \text{µm}}{0.8 \, \text{µm}} \text{,} \\ \left(\frac{W}{L}\right)_{6} &= \frac{10 \, \text{µm}}{0.8 \, \text{µm}} \end{split}$$



**Fig. PS7-4** 

- **5.** Fig. PS7-5 shows a multi-stage BJT OPAmp design. BJTs  $Q_1 Q_9$  have the same size except for  $Q_6$ , which is 4x larger than  $Q_9$ . Ignore Early effect.
  - (a) Assuming  $\beta \gg 1$  and  $|V_{BE}| = 0.7V$ , calculate the DC currents flowing through  $Q_1 Q_9$ .
  - (b) Calculate the static power dissipation of this op amp.
  - (c) If transistors  $Q_1$  and  $Q_2$  have  $\beta = 100$ , what is the input bias current of this op amp?
  - (d) If  $V_{CE(sat)} = 0.4$ V, determine the input common-mode range of this op amp.
  - (e) Calculate the input resistance, mid-band gain  $v_o/v_{id}$ , and the output resistance of this op amp.



**Fig. PS7-5**