PROBLEM SET \#8

Issued: Tuesday, Nov. 3, 2015
Due (at 8 a.m.): Wednesday, Nov. 11, 2015, in the EE 140/240A HW box near 125 Cory.

1. Fig. PS8-1 presents a BJT op amp with output stage. For all transistors $\left|V_{B E}\right|=0.7 \mathrm{~V}, \beta=$ 100 and $V_{A}=200 \mathrm{~V}$.
(a) Determine the value of R such that Q_{1} and Q_{2} are biased with $I_{C}=100 \mu \mathrm{~A}$.
(b) Find the input resistance, output resistance, and voltage gain $v_{o} /\left(v_{+}-v_{-}\right)$.
(c) Assuming $\left|V_{\text {CEsat }}\right|=0.3 \mathrm{~V}$ for all the transistors, find the input common-mode range
(d) For no load, what is the range of available output voltages?
(e) Assuming Q_{1} or Q_{2} are allowed to cut-off, find the smallest load resistance that can be driven over the range you found in part (d).

Fig. PS8-1
2. Fig. PS8-2 presents a BJT op amp with compensation capacitor C_{C}. All transistors have $\beta=100,\left|V_{B E}\right|=0.7 \mathrm{~V}$, and $V_{A}=\infty$.
(a) Find the bias current I_{C} for each transistor.
(b) Find the voltage gain $v_{o} /\left(v_{+}-v_{-}\right)$of the amplifier with $R_{L}=10 \mathrm{k} \Omega$.
(c) With R_{L} as in (b), find the value of C_{C} to obtain a 3-dB frequency of 100 Hz .

Fig. PS8-2
3. In the circuit of Fig. PS8-3, $(W / L)_{1-4}=100 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}, C_{1}=C_{2}=0.5 \mathrm{pF}, I_{S S}=1 \mathrm{~mA}, \mu_{n}=$ $350 \mathrm{~cm}^{2} / \mathrm{V} / \mathrm{s}, \mu_{p}=100 \mathrm{~cm}^{2} / \mathrm{V} / \mathrm{s}, t_{o x}=9 \mathrm{~nm}, \varepsilon_{r}=3.9, L_{d}=0.08 \mu \mathrm{~m}$, and $L_{e f f}=L-2 L_{d}$.
(a) If a step voltage (as shown) is applied to the input of this circuit, find an expression for the time constant of its output response in terms of $g_{m 1-4}, r_{o 1-4}, C_{1}$ and C_{2}.
(b) What is the slew rate of this circuit?
(c) With a $1-\mathrm{V}$ step at the input, how long does it take for $I_{D 2}$ to reach $0.1 I_{S S}$? Before $I_{D 2}$ reaches $0.1 I_{S S}$, you can assume that the current through C_{1} and C_{2} roughly equals $I_{S S}$.

Fig. PS8-3
4. Write expressions for the low frequency closed-loop gains and poles of Fig. PS8-4 (a) and (b), where $A(s)$ is the transfer function of a single pole amplifier (pole $\omega_{p 1}$) with a large low frequency gain of A_{0}.

Fig. PS8-4

