PROBLEM SET #8

Issued: Tuesday, Nov. 3, 2015

Due (at 8 a.m.): Wednesday, Nov. 11, 2015, in the EE 140/240A HW box near 125 Cory.

- 1. Fig. PS8-1 presents a BJT op amp with output stage. For all transistors $|V_{BE}| = 0.7 \text{V}$, $\beta = 100$ and $V_A = 200 \text{V}$.
 - (a) Determine the value of R such that Q_1 and Q_2 are biased with $I_C = 100 \mu A$.
 - (b) Find the input resistance, output resistance, and voltage gain $v_o/(v_+ v_-)$.
 - (c) Assuming $|V_{CESat}| = 0.3V$ for all the transistors, find the input common-mode range
 - (d) For no load, what is the range of available output voltages?
 - (e) Assuming Q_1 or Q_2 are allowed to cut-off, find the smallest load resistance that can be driven over the range you found in part (d).

Fig. PS8-1

- 2. Fig. PS8-2 presents a BJT op amp with compensation capacitor C_C . All transistors have $\beta = 100$, $|V_{BE}| = 0.7V$, and $V_A = \infty$.
 - (a) Find the bias current I_C for each transistor.
 - (b) Find the voltage gain $v_o/(v_+ v_-)$ of the amplifier with $R_L = 10 \text{k}\Omega$.
 - (c) With R_L as in (b), find the value of C_C to obtain a 3-dB frequency of 100 Hz.

Fig. PS8-2

- **3.** In the circuit of Fig. PS8-3, $(W/L)_{I-4}=100 \mu m/0.5 \mu m$, $C_1=C_2=0.5 p F$, $I_{SS}=1 m A$, $\mu_n=350 cm^2/V/s$, $\mu_p=100 cm^2/V/s$, $t_{ox}=9 n m$, $\varepsilon_r=3.9$, $L_d=0.08 \mu m$, and $L_{eff}=L-2 L_d$.
 - (a) If a step voltage (as shown) is applied to the input of this circuit, find an expression for the time constant of its output response in terms of g_{m_1-4} , r_{o_1-4} , C_1 and C_2 .
 - (b) What is the slew rate of this circuit?
 - (c) With a 1-V step at the input, how long does it take for I_{D2} to reach $0.1I_{SS}$? Before I_{D2} reaches $0.1I_{SS}$, you can assume that the current through C_1 and C_2 roughly equals I_{SS} .

Fig. PS8-3

4. Write expressions for the low frequency closed-loop gains and poles of Fig. PS8-4 (a) and (b), where A(s) is the transfer function of a single pole amplifier (pole ω_{p1}) with a large low frequency gain of A_0 .

Fig. PS8-4