PROBLEM SET \#1

Issued: Tuesday, Jan. 24, 2012
Due: Tuesday, Jan. 31, 2012, 5:00 p.m. in the EE 140 homework box in 240 Cory

1. Consider a $p n$ junction diode in silicon with doping densities $N_{A}=10^{17} / \mathrm{cm}^{3}$ and $N_{D}=10^{20} / \mathrm{cm}^{3}$. (assume $n_{i}=10^{10} / \mathrm{cm}^{3}$, junction area $=1 \times 10^{-5} \mathrm{~cm}^{2}$)
(a) Calculate the built-in potential, depletion-layer depths and maximum field for a reverse bias of 5 V .
(b) Repeat (a) for zero external bias and 0.3 V forward bias.
(c) Calculate the junction capacitance at zero bias, 3 V reverse bias and 0.5 V forward bias.
2. Gray \& Meyer, Chapter 1: Problem 1.9. (As in the text, assume $n_{c}=n_{s}=0.3$.)
3. An NMOS transistor has parameters $W=10 \mu \mathrm{~m}, L=1 \mu \mathrm{~m}, k^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=0.02 \mathrm{~V}^{-1}$, $t_{o x}=100 \AA, \phi_{f}=0.3 \mathrm{~V}, V_{t 0}=0.7 \mathrm{~V}$, substrate doping concentration $=10^{15} / \mathrm{cm}^{3}$, relative permittivity of $\mathrm{Si}=11.8$ and of gate oxide $=3.9$. Ignore velocity saturation effects.
(a) Sketch the $I_{D}-V_{D S}$ characteristics for $V_{D S}$ from 0 to 3 V and $V_{G S}=0.5 \mathrm{~V}, 1.5 \mathrm{~V}$, and 3 V . Assume $V_{S B}=0 \mathrm{~V}$.
(b) Sketch the $I_{D}-V_{G S}$ characteristics for $V_{D S}=2 \mathrm{~V}$ as $V_{G S}$ varies from 0 to 2 V with $V_{S B}=0 \mathrm{~V}, 0.5 \mathrm{~V}$, and 1 V .
(c) Derive and sketch the complete small-signal equivalent circuit for the device with $V_{G S}=1 \mathrm{~V}, V_{D S}=3 \mathrm{~V}$ and $V_{S B}=1 \mathrm{~V}$. Use $\psi_{0}=0.7 \mathrm{~V}, C_{s b 0}=C_{d b 0}=20 \mathrm{fF}$, and $C_{g b}=5 \mathrm{fF}$. Overlap capacitance from gate to source and gate to drain is 2 fF .
(d) Under the bias condition in (c), calculate the frequency of unity current gain of this device.
4. Refer to the circuit shown below: $\left(\beta_{f}=100, V_{A} \rightarrow \infty, r_{b}=0, V_{B E(o n)}=0.7 \mathrm{~V}, V_{C E(s a t)}=0.2 \mathrm{~V}\right.$, $k^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t}=0.6 \mathrm{~V}, \lambda=0$)
(a) Assume $R_{X}=10 \mathrm{k} \Omega$, calculate the DC operating points including the current flowing along each branch and DC voltage at each node. (You can assume $\beta_{f} \rightarrow \infty$ for part(a).)
(b) What is the maximum value for R_{x} that ensures all the BJT's are in forward active region?

5. Consider a bias circuit shown below. Calculate the output voltage $V_{\text {out }}$ and output current $I_{\text {out }}$. Assume $V_{B E(o n)}=0.7 \mathrm{~V}$ and $V_{C E(\text { sat })}=0.2 \mathrm{~V}$.

