PROBLEM SET #12

Issued: Tuesday, Apr.24, 2012

Due: Tuesday, May. 1, 2012, 6:00 p.m. in the EE 140 homework box in 240 Cory

1. Calculate the mid-band small-signal gain v_o/i_x , input resistance and output resistance of the amplifier shown in Fig. PS12.1. Use $\beta_F = 150$ and $V_A = 50$ V.

2. A variable-gain CMOS amplifier is shown in Fig. PS12.2. Note that M_4 represents shunt feedback around M_6 . Assuming that the bias value of V_i is adjusted so that $V_{GD6} = 0$ V dc, calculate the bias currents in all devices and the small-signal voltage gain and output resistance for V_c equal to 3 V, and then 4 V. Assume $\mu_p C_{ox} = 30\mu A/V^2$, $\mu_n C_{ox} = 60\mu A/V^2$, $V_{tn} = |V_{tp}| = 0.8$ V, $2\Phi_F = 0.6$ V, $\gamma = 0.5$ V^{1/2} and $\lambda_n = \lambda_p = 0$.

Fig. PS12.2

3. In the two CMOS amplifier circuits shown in Fig. PS12.3(a) and Fig. PS12.3(b), assume $V_{tn} = 0.7$ V, $V_{tp} = -0.8$ V, $\mu_n C_{ox} = 134.2 \mu A/V^2$, $\mu_p C_{ox} = \mu_n C_{ox}/3.5$, $\lambda_n = 0.1$ V⁻¹, $\lambda_p = 0.2$ V⁻¹. You can neglect body effect in this problem.

(a) In the circuit of Fig. PS12.3(a), $(W/L)_{1-3} = 50\mu m/0.5\mu m$, $I_{D1} = I_{D2} = I_{D3} = 0.5 m$ A, and $R_{S1} = R_F = R_{D2} = 3k\Omega$. Determine the input DC bias voltage V_{b1} required to establish the above currents, and then calculate the closed-loop voltage gain and output resistance.

(b) The circuit in Fig. PS12.3(a) can be modified as shown in Fig. PS12.3(b), where a source follower, M_4 , is inserted in the feedback loop. Note that M_1 and M_4 can also be viewed as a differential pair. Assume $(W/L)_{1-4} = 50 \mu m/0.5 \mu m$, $I_{D1} = I_{D2} = I_{D3} = I_{D4} = 0.5 m$ A, $R_{S1} = R_F = R_{D2} = 3k\Omega$, and $V_{b2} = 1.5$ V. Calculate the closed-loop voltage gain and output resistance. Compare the results with those obtained in part (a).

Fig. PS12.3 (a)

Fig. PS12.3 (b)