PROBLEM SET \#12

Issued: Tuesday, Apr.24, 2012
Due: Tuesday,May.1, 2012, 6:00 p.m. in the EE 140 homework box in 240 Cory

1. Calculate the mid-band small-signal gain v_{o} / i_{x}, input resistance and output resistance of the amplifier shown in Fig. PS12.1. Use $\beta_{F}=150$ and $V_{A}=50 \mathrm{~V}$.

Fig. PS12.1
2. A variable-gain CMOS amplifier is shown in Fig. PS12.2. Note that M_{4} represents shunt feedback around M_{6}. Assuming that the bias value of V_{i} is adjusted so that $V_{G D 6}=0 \mathrm{~V}$ dc, calculate the bias currents in all devices and the small-signal voltage gain and output resistance for V_{c} equal to 3 V , and then 4 V . Assume $\mu_{p} C_{o x}=30 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{n} C_{o x}=60 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{\text {tn }}$ $=\left|V_{t p}\right|=0.8 \mathrm{~V}, 2 \Phi_{F}=0.6 \mathrm{~V}, \gamma=0.5 \mathrm{~V}^{1 / 2}$ and $\lambda_{n}=\lambda_{p}=0$.

Fig. PS12.2
3. In the two CMOS amplifier circuits shown in Fig. PS12.3(a) and Fig. PS12.3(b), assume $V_{t n}$ $=0.7 \mathrm{~V}, V_{t p}=-0.8 \mathrm{~V}, \mu_{n} C_{o x}=134.2 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{p} C_{o x}=\mu_{n} C_{o x} / 3.5, \lambda_{n}=0.1 \mathrm{~V}^{-1}, \lambda_{p}=0.2 \mathrm{~V}^{-1}$. You can neglect body effect in this problem.
(a) In the circuit of Fig. PS12.3(a), $(W / L)_{1-3}=50 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}, I_{D I}=I_{D 2}=I_{D 3}=0.5 \mathrm{~mA}$, and $R_{S 1}$ $=R_{F}=R_{D 2}=3 \mathrm{k} \Omega$. Determine the input DC bias voltage $V_{b 1}$ required to establish the above currents, and then calculate the closed-loop voltage gain and output resistance.
(b) The circuit in Fig. PS12.3(a) can be modified as shown in Fig. PS12.3(b), where a source follower, M_{4}, is inserted in the feedback loop. Note that M_{1} and M_{4} can also be viewed as a differential pair. Assume $(W / L)_{1-4}=50 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}, I_{D 1}=I_{D 2}=I_{D 3}=I_{D 4}=0.5 \mathrm{~mA}, R_{S 1}=R_{F}=$ $R_{D 2}=3 \mathrm{k} \Omega$, and $V_{b 2}=1.5 \mathrm{~V}$. Calculate the closed-loop voltage gain and output resistance. Compare the results with those obtained in part (a).

Fig. PS12.3 (a)

Fig. PS12.3 (b)

